
On Automating Configuration Dependency
Validation via Retrieval-Augmented Generation

Sebastian Simon, Alina Mailach, Johannes Dorn, Norbert Siegmund
Leipzig University and ScaDS.AI Dresden/Leipzig, Leipzig, Germany

{sebastian.simon, alina.mailach, johannes.dorn, norbert.siegmund}@cs.uni-leipzig.de

Abstract—Configuration dependencies arise when multiple
technologies in a software system require coordinated settings
for correct interplay. Existing approaches for detecting such
dependencies often yield high false-positive rates, require ad-
ditional validation mechanisms, and are typically limited to
specific projects or technologies. Recent work that incorporates
large language models (LLMs) for dependency validation still
suffers from inaccuracies due to project- and technology-specific
variations, as well as from missing contextual information.

In this work, we propose to use retrieval-augmented generation
(RAG) systems for configuration dependency validation, which
allows to incorporate additional project- and technology-specific
context information. Specifically, we evaluate whether RAG can
improve LLM-based validation of configuration dependencies
and what contextual information are needed to overcome the
static knowledge base of LLMs. To this end, we conducted a large
empirical study on validating configuration dependencies using
RAG. Our evaluation shows that vanilla LLMs already demon-
strate solid validation abilities, while RAG has only marginal
or even negative effects on the validation performance of the
models. By incorporating tailored contextual information into
the RAG system–derived from a qualitative analysis of validation
failures–we achieve significantly more accurate validation results
across all models, with an average precision of 0.84 and recall of
0.70, representing improvements of 35 % and 133 % over vanilla
LLMs, respectively. In addition, these results offer two important
insights: Simplistic RAG systems may not benefit from additional
information if it is not tailored to the task at hand, and it is
often unclear upfront what kind of information yields improved
performance.

Index Terms—RAG, LLMs, Configuration Dependencies, De-
pendency Validation

I. INTRODUCTION

Modern software development involves coordinating a wide
range of technologies, including code frameworks, build tools,
databases, and continuous integration and delivery (CI/CD)
pipelines [1]. Each technology typically requires configuration
in its own format. For instance, container configurations are
defined in a Dockerfile, whereas Java applications may be
configured in a YAML-file. Such configuration files encode
hundreds of configuration options in their own structure,
syntax, and semantic [2], resulting in a vast and complex
configuration space. Most of these diverse technologies must
be configured jointly to ensure their correct interplay. Consider
a typical Spring Boot project: the port values specified in the
application.yml in Listing 1 and in the Dockerfile
in Listing 2 must match to ensure the application is accessible
from outside the container. This constraint constitutes a con-
figuration dependency. Such dependencies can occur within

a single technology (intra-technology) and across multiple
technologies (cross-technology).
1 server:
2 port: 8080
3 spring:
4 application:
5 name: app

Listing 1: Application port configured in Spring Boot’s
application.yml.

1 FROM openjdk:17
2 COPY target/myapp.jar app.jar
3 EXPOSE 8080
4 ENTRYPOINT ["java", "-jar", "app.jar"]

Listing 2: A Dockerfile exposing the port of the application.

Naturally, developers cannot meticulously manage all the
frameworks and tools that potentially interact in their tech-
nology stack. As a result, configuration dependencies are
rarely fully documented [3], leading to incomplete and often
outdated documentation [4, 5, 6]. The lack of a comprehensive
overview about how and where configuration dependencies
manifest within a software project poses several challenges
in practice: (1) the ever-evolving configuration landscape of
software projects increases the risk of severe misconfigurations
due to the violation of dependencies [7, 8, 9]; (2) misconfig-
urations often remain unnoticed until production because they
emerge from complex interactions between multiple technolo-
gies [2]; (3) resulting configuration errors are complex and far-
reaching, involving several technologies and diverse configu-
ration artifacts, such that detection becomes time-consuming
and costly [10, 11]; (4) resolving these configuration errors
has found to be more challenging than fixing software bugs,
making misconfigurations one of the most common causes of
software failures in production today [12, 13].

Several dependency detection approaches have been pro-
posed, using heuristics [14, 3, 15, 16], domain-specific lan-
guages [17, 18], and machine learning techniques [19, 20, 21].
Unfortunately, these approaches often suffer from a high rate
of false positives, where, for example, independent config-
uration options are incorrectly linked due to coincidental
similarities. To address these false positives, further validation
mechanisms have been integrated to additionally judge con-
figuration dependencies. However, these validation techniques
typically require significant technical effort and are usually
limited to individual projects, a small set of technologies, or
specific dependency types [18].



Given these challenges, recent advances in large language
models (LLMs) [22, 23, 24, 25, 26, 27] present an opportunity
to improve the validation of configuration dependencies in
an automated and technology-agnostic way. In fact, Lian et
al. [28] have successfully validated configuration constraints
in individual configuration files of a single technology using
LLMs. Nevertheless, LLMs still struggle to validate depen-
dencies across multiple technologies due to their project-
and technology-specific variations and a lack of contextual
information. Here, key limitations mainly include outdated
training data of LLMs (e.g., due to changes in configuration
formats and frameworks), the unavailability of project-specific
information (e.g., project structure or available resources), and
ambiguous naming schemes for configuration options.

Retrieval-augmented generation (RAG) [29] offers a solu-
tion to the lack of information available in pre-trained LLMs
by providing additional context during generation. However,
selecting relevant context sources is particularly challenging,
as information about configuration dependencies is rarely
available and often scattered across multiple sources. For
example, user manuals typically describe configuration options
in terms of their names, functionality, and occasionally their al-
lowed parameter ranges. But they almost never include explicit
dependency information to other options, neither within the
same technology nor across technologies. So, developers must
often consult different sources, such as official technology
documentation, Stack Overflow posts, GitHub repositories, or
Web searches, to find real-world use cases of configuration
options in which configuration dependencies are explicitly or
implicitly discussed when validating dependencies.

In this work, we propose the use of RAG for configu-
ration dependency validation. Specifically, we evaluate the
validation effectiveness of vanilla LLMs compared to RAG
and what types of information LLMs actually require for
effective dependency validation. Specifically, we develop a
novel RAG system for dependency validation, which integrates
four widely-used context sources (i.e., technology docs, Stack
Overflow posts, GitHub repositories, and Web search results).
Our approach is guided by three primary objectives: (1)
reducing false positives by providing accurate classification
capabilities in a automated and technology-agnostic way, (2)
assessing the usefulness of RAG for dependency validation,
and (3) identifying what information LLMs actually require
for effective dependency validation.

In a series of experiments, we first validate 350 config-
uration dependencies from ten real-world open-source soft-
ware projects using six state-of-the-art LLMs and eight RAG
variants (see Section IV-B) with the same underlying models.
We then manually analyze validation failures of vanilla LLMs
and the best found RAG variant to derive key information
LLMs require for effective dependency validation. Finally, we
integrate this special information into the best found RAG
variant and assess its validation effectiveness on a previously
unseen dataset of 150 configuration dependencies.

Our results show that vanilla LLMs already exhibit solid val-
idation abilities, while RAG, contrary to its promise, only has

marginal or even negative effects on their validation effective-
ness. A closer look at the retrieved context for this task reveals
that it often lacks dependency-related information and thus
increases noise for LLMs rather than providing meaningful
information, negatively affecting their validation performance.
In a subsequent qualitative analysis of validation failures, we
identified eight distinct failure categories, most of which are
project- and technology-specific and were previously unknown
to the literature. From these categories, we derived key infor-
mation necessary for effective dependency validation, ranging
from project-specific details over precise prompts to similar
examples of classified dependencies. Integrating this special
information into the best found RAG variant significantly
improves validation performance over vanilla LLMs, achieving
an average precision of 0.84 and recall of 0.70—improving by
35 % and 133 %, respectively.

In addition to these improvements in dependency validation,
the key takeaway is that merely adding contextual information
does not guarantee better validation effectiveness of LLMs.
Instead, a systematic refinement of RAG components and
particularly context sources is essential to unleash the full
potential of RAG systems for dependency validation, and thus
needs to be done in any RAG development activity.

In summary, we make the following contributions:
• A novel RAG system for configuration dependency val-

idation, achieving an improvement of precision by 35 %
and recall by 133 % over vanilla LLMs.

• The largest dataset of cross-technology configuration de-
pendencies manually validated that we are aware of.

• An empirical assessment on the effectiveness of RAG for
dependency validation, confirming that RAG with special
information is beneficial for this task.

• An extensive qualitative analysis of validation failures,
resulting in a novel taxonomy of dependency validation
failures, thereby enabling future work in this area.

We provide a supplementary website with all code scripts,
dependency datasets, prompt templates, and validation results
at https://github.com/AI-4-SE/rag-config-val.

II. RELATED WORK

In this section, we discuss related work on dependency
detection, configuration validation, and LLMs for tackling
software configuration.

Configuration Dependency Detection: The challenge of
detecting configuration dependencies in software systems has
inspired several research approaches. A number of approaches
rely on machine learning. For example, ConfigC [20] and Con-
figV [19] use an advanced form of association rule learning to
learn different kinds of configuration rules. These approaches
identify both coarse- and fine-grained value dependencies
between configuration options in MySQL configuration files.

Chen et al. [3] studied configuration dependencies in 16
major software projects using metadata and manuals to iden-
tify common code patterns and existing dependency-checking
practices. They developed cDep, a framework that identifies

2

https://github.com/AI-4-SE/rag-config-val


configuration dependencies within and across software compo-
nents using static taint analysis. Simon et al. [14] conducted
a systematic literature study, identifying value-equality as a
significant and common form of cross-technology dependency
in academic literature. They propose CfgNet, a framework that
models a software project and its surrounding ecosystem (i.e.,
technologies such as CI/CD pipelines, build tools, and code
frameworks) as a configuration network, enabling the early
detection of dependency violations by checking the changes
in a configuration network. Ramachandran et al. [30] utilized
APIs to determine configuration dependencies, developing
a heuristic to rank critical dependencies. Rex [9] employs
association rule learning to identify correlations between code
and configuration files in large services and suggest required
changes. These approaches offer valuable solutions for detect-
ing configuration dependencies in software systems, but often
require extensive additional validation efforts. By contrast,
our goal is to enable an automated and technology-agnostic
validation of dependencies using RAG.

Configuration Validation: Several research approaches aim
to validate configurations to proactively detect misconfigura-
tions. A common method relies on domain-specific languages
to describe configuration specification rules. For example,
ConfValley [17] includes a declarative language for describing
configuration specifications, an inference engine for automati-
cally generating these specifications, and a checker engine for
determining if a given configuration matches its specification.
Similarly, ConfigValidator [18] employs a declarative language
to write rules for detecting various misconfigurations. Both
approaches require manual engineering to define specification
rules. By contrast, we focus on an automated validation of
configuration dependencies using LLMs, eliminating the need
for manual rule engineering.

The work most closely related to ours is that of Lian et.
al [28], which investigates the effectiveness of using LLMs for
configuration validation. They introduce Ciri, an LLM-based
framework, to detect constraint and dependency violations
in single configuration files. Their experiments on ten open-
source software systems show promising results in validating
constraints, but difficulties in recognizing certain miscon-
figurations, such as dependency violations. While constraint
violations (e.g., syntax and value range) are more common, de-
pendency violations are often project- and technology-specific
and thus harder for LLMs to capture without fine-tuning
on dependency-related data or additional relevant contextual
information. The key difference to our work is the focus on
single-file constraint and dependency violations. So as a novel
contribution, we provide for the first time a RAG system that
integrates additional context information to validate configu-
ration dependencies across multiple files, which sets our work
apart from Lian et al.[28].

LLMs for Tackling Software Configuration: LLMs are
promising tools for handling software configuration, demon-
strated by various LLM-based tools. For instance, DB-
Bert [31] extracts domain knowledge gained from relevant
text sources, such as manuals, to identify database sys-

Dependency
to validate

Context Retrieval

Dynamic Context Sources

Docs Web SearchDocs

Static Context Sources
Vector Database

Context Ingestion

ContextRe-rankingHybrid SearchRetrieval Query

Validation Generation

ContextDependency

+

Prompt GenerationMulti-QueryVoting

Final Validation
Response

Fig. 1: Overview of the architecture of the RAG system

tems parameters for tuning and recommended parameters
values. GPTuner [22] optimizes database management system
(DBMS) tuning using an LLM-based pipeline and a prompt
ensemble algorithm. LLMTune [23] recommends high-quality
initial configurations tailored to a new database tuning task
based on previous tuning tasks of DB administrators. LLM-
CompDroid [24] uses LLMs alongside traditional bug resolu-
tion tools to detect and repair configuration compatibility bugs
in Android apps. LogConfigLocalizer [25] leverages LLMs
to localize root-cause configuration properties through log
analysis. PerfSense [26] identifies performance-sensitive con-
figurations using LLMs. These approaches highlight LLMs’
potential in handling software configuration problems. We ex-
tend this domain by exploring RAG for dependency validation.

III. DEPENDENCY VALIDATION WITH RAG
We propose a novel RAG system to validate configuration

dependencies. Figure 1 gives an overview of the architecture
from indexing data from different sources as context into
a vector database, over retrieving relevant context from it,
to querying an LLM with an augmented prompt. Next, we
describe these steps in detail.

A. Context Ingestion

As the knowledge foundation of RAG, we populate a
vector database with static and dynamic context information.
Static context information is stored at system initialization
and originates from: technology documents, Stack Overflow
posts, and GitHub repositories. For each validation query, we
extract dynamic context information via Web search and then
index the content into the vector database. We rationalize the
selection of context sources in Section IV-B.

To index content derived from the context sources, we first
generate documents with metadata, such as the origin of a
context source. The resulting documents are then split into
smaller chunks. Based on preliminary experiments aimed at

3



balancing context granularity and length, we selected a chunk
size of 256 tokens and an overlap of 10 tokens, ensuring
sufficient context capture. These chunks are converted into
embeddings, a vector representation of the documents, using
an embedding model. Finally, the resulting embeddings are
indexed in the vector database Pinecone [32].

B. Context Retrieval

The RAG system receives a configuration dependency as
input from a dependency-detection tool. Here, a dependency
must include the involved option names, their values, configu-
ration files, and associated technologies. We first transform
this dependency into a structured dataclass instance that
encapsulated these attributes, enabling a consistent handling
throughout context retrieval and validation generation. Based
on this structured representation, we construct a retrieval query
using a predefined template that embeds the option names,
values, and associated technologies of the dependency. To
obtain an initial set of context, we conduct a hybrid search
in the vector database with the retrieval query. With hybrid
search, we perform a search with sparse-dense vectors, com-
bining sparse and dense embeddings in a single vector. This
allows us to find context based on configuration option names
via keyword matching (sparse vectors) and relevant context
of dependencies via semantic matching (dense vectors). After
obtaining a large initial set of context, we re-rank the elements
of the initial set according to their relevance. Finally, we use
the re-ranked context to augment the prompt for dependency
validation.

C. Validation Generation

We created a prompt for dependency validation using a col-
lective prompt design process, in which the first author drafted
an initial version of the prompt, which was then reviewed,
discussed, and adjusted with the other authors to improve its
phrasing. Our final prompt for dependency validation includes
five elements: (1) a system message, which defines the role
of the LLM, (2) a definition of the dependency type that
it has to validate, (3) the retrieved context information (see
Section III-B), (4) the actual instruction to validate the given
dependency, and (5) a description of the JSON format in
which the LLM should respond. The validation prompt and
its components are shown in Figure 2.

A central challenge addressed in the dependency definition
(2) is the potential of configuration option values to be equal
by coincidence. We explicitly accounted for this, as early
observations revealed that some options, particularly with
boolean and numeric values, can coincidentally match without
indicating a dependency.

The JSON response format prompts the LLM to fill in three
key fields: (1) plan: a string that describes the plan how to
validate the dependency based on the contextual information
step by step; (2) rationale: a string that explains whether and
why the configuration options depend on each other or not; and
(3) isDependency: a boolean indicating the final decision of

Sy
st

e
m

U
se

r

Role (1)

Dependency 
Definition (2)

Context
Information 

(3)

Validation 
Task (4)

Response 
Format (5)

You are a full-stack expert in validating intra-technology and cross-technology 
configuration dependencies. You will be presented with configuration 
options found in the software project {project_name}. Your task is to 
determine whether the given configuration options actually depend on each 
other based on value-equality.

A value-equality dependency is present if two configuration options must 
have identical values in order to function correctly. Inconsistencies in these 
configuration values can lead to configuration errors. Importantly, 
configuration options may have equal values by accident, meaning that there 
is no actual dependency, but it just happens that they have equal values.

Information about both configuration options, such as their descriptions or 
prior usages are below:
{context}

Given the context information, perform the following task:
Carefully evaluate whether configuration option {nameA} of type {typeA} 
with value {valueA} in {fileA} of technology {technologyA} depends on 
configuration option {nameB} of type {typeB} with value {valueB} in {fileB} of 
technology {technologyB} or vice versa. 

Respond in a JSON format as shown below:
{ "plan" : string, // Write down a step-by-step plan on how to solve the task 
given the information and examples of similar dependencie above.
"rationale" : string, // Provide a concise explanation of whether and why the 
configuration options depend on each other due to value-equality.
"isDependency" : boolean // True if a dependency exists, or False otherwise.}

Fig. 2: The prompt template and its components used for
dependency validation.

the LLM whether the given dependency is a true dependency
or a false positive.

This response structure aligns with chain-of-thought
prompting [33], enhancing the LLM’s analytical capabili-
ties. By decomposing the validation process into sequential
steps, the LLM ensures a logical progression, first outlining
a validation strategy, then providing reasoning, and finally
making a decision. This aligns with recent reasoning research
to enable more test-time compute to reach a final decision.
Moreover, we initially pursue a zero-shot strategy to assess the
general capability of RAG in validating dependencies without
influencing results through task-specific examples.

As LLMs are prone to hallucinations and inconsisten-
cies [34, 35], we adopt a multi-query strategy. By querying the
LLM multiple times with the same prompt and temperature
and aggregating the responses, we obtain a final result that
better reflects the model’s understanding of the configuration
dependency and enhances its consistency compared to a single
try. Specifically, we apply a frequency-based voting strategy to
select the response that recurs most often across the generated
responses [36, 28].

IV. EXPERIMENT SETUP

Our experiment setup follows a proposed methodology
for evaluating RAG systems [37]. We present our research
questions and design decision for conducting our experiments.

A. Research Questions

RAG for Dependency Validation: We evaluate whether
and to what extent RAG improve over vanilla LLMs for
dependency validation. To this end, we conduct an experiment
in which we validate 350 real-world configuration dependen-
cies with six state-of-the-art LLMs and eight different RAG
variants with the same underlying LLMs. Thereby, we assess
the validation effectiveness of vanilla LLMs compared to

4



RAG and analyze the kind and amount of retrieved contextual
information. We state the following research questions:

RQ1.1 How effective are vanilla LLMs compared to RAG
in validating configuration dependencies?

RQ1.2 What information does RAG retrieve for depen-
dency validation?

Types of Information Needed for Dependency Validation:
To contribute further to the automated validation of config-
uration dependencies, we determine when and why LLMs
fail. With a RAG system at our hand, we can qualitatively
analyze the causes of failures as we have explicit contextual
information available. This is hardly achievable with pure
LLMs since the information is inherently stored in the model’s
parameters. Thus, we state the following research questions:

RQ2.1 What kind of failures occur in LLM-based depen-
dency validation?

RQ2.2 What types of information do LLMs require for
accurate dependency validation?

B. Operationalization

Procedure: To address RQ1.1-1.2, we validated 350 real-
world configuration dependencies using six state-of-the-art
LLMs and eight RAG variants with the same underlying mod-
els. We began by validating the dependencies using the vanilla
LLMs without any additional context. Next, we validated the
dependencies with each RAG variant as follows: (1) We set
up the vector database according to the specific RAG variant
and ingested previously scraped static context information. (2)
For each dependency, we then scraped the Web for additional
dynamic context and ingested it into the vector database.
(3) Next, we retrieved context information from the vector
database for each dependency, including now both static and
dynamic context information. We stored the retrieved context
along with its metadata, such as the source and relevance score.
(4) We joined the dependency and context information and
generated validations for all dependencies using the different
LLMs. We repeated these steps for all RAG variants. This
procedure ensured that all LLMs received exactly the same
context for a given dependency, avoiding order and time bias
and, thus, enabling a sound comparison of the validation
performance across different LLMs and RAG variants. Finally,
we answered RQ1.1 by comparing the validation performance
using precision, recall, and F1-score, and analyzed the context
information retrieved by the different RAG systems to answer
RQ1.2.

To answer RQ2.1-2.2, we conducted a qualitative analysis
of failures made by the vanilla LLMs and the best found
RAG system. Specifically, we inspected all instances in which
validation fails by extracting the involved configuration op-
tions, the retrieved context, and the reasoning of the LLM.
We examined names and values of configuration options, as
well as the technologies involved and assessed whether the
LLM’s reasoning aligns with its incorrect final assessment. By
comparing this reasoning to our own reasoning during manual

classification, we analyzed whether validation failures origi-
nate from missing information, the presence of false informa-
tion, noise, or ambiguities. We then categorized failures based
on recurring mistakes or underlying causes (RQ2.1). From
these failure categories, we derived what type of information
an LLM needs to improve dependency validation. To ensure
that this information, in fact, leads to improved validation
performance, we integrated it into the best found RAG variant
and, if applicable, to the vanilla LLMs, and assessed the
validation effectiveness of the refined RAG variant on an
unseen dataset of 150 real-world configuration dependencies
(RQ2.2).

TABLE I: Subject systems with version (SHA), number of
stars, and number of commits

GitHub Project Version # Stars # Commits

codecentric/spring-boot-admin 60be5d1 12.2k 3.1k
apolloconfig/apollo 49bd8cc 28.9k 2.8k
pig-mesh/pig 8e10249 5.7k 1.6k
linlinjava/litemall 92ffc39 19k 1.2k
jetlinks/jetlinks-community 1ad1e44 5.2k 1.2k
macrozheng/mall 70a226f 76.6k 1k
macrozheng/mall-swarm fd5246c 11.5k 463
Yin-Hongwei/music-website 12e1b0a 5.1k 385
wxiaoqi/Sping-Cloud-Platform 9aad435 6.3k 358
sqshq/piggymetrics 6bb2cf9 13.1k 290

Datasets: A sound evaluation requires a dataset containing
configuration dependencies and ground truth labels that can
be used to assess the validation effectiveness of RAG. We
extracted software projects that integrate technologies with
potential configuration dependencies spanning an entire tech-
nology stack and that are covered by a previously published
dependency-detection tool. We decided to use CfgNet [14] to
extract potential dependencies since it is technology-agnostic
and supports many state-of-the-art technologies.

For the technology stack, we decided to select software
projects that incorporate a Spring Boot microservice architec-
ture as it represents a technology stack of significant practical
relevance. Using GitHub Topics [38], we obtained over 60 000
public repositories in the Spring Boot ecosystem. We sorted
these projects by stars and included them if they incorporate at
least the following technologies: Spring Boot, Maven, Docker,
and Docker Compose. We selected the top 10 software projects
that met these criteria to ensure a manageable yet diverse,
and practically important set of subject systems. We list the
resulting subject systems and their characteristics in Table I.

To obtain a ground truth dataset of cross-technology config-
uration dependencies, we ran CfgNet on the subject systems.
For each software project, we sampled 50 potential depen-
dencies, leading to a final set of 500 dependency candidates
— the largest cross-technology dependency dataset we are
aware of. Note that the resulting dataset is not restricted to the
technologies used for selecting the projects, but includes all
technologies that CfgNet captures from a repository, including
build tools, CI/CD pipelines, databases, code, and testing
frameworks.

5



To ensure the correctness of our ground truth dataset, we
employed a manual multi-stage annotation process: First, the
main author manually reviewed and classified each candidate
in this dataset into one of three classes: (1) true for a valid
dependency, (2) false for a false positive, and (3) borderline
for unclear cases based on domain/technology expertise and
inspection of related configuration options and values. Next,
a second author independently reviewed all labels, conducting
sanity checks and flagging inconsistencies. Finally, all border-
line and conflicting cases were jointly discussed by the authors
until a final consensus has been reached. This ensured a high-
quality, human-validated dataset for our evaluation. Out of the
500 candidates, we finally classified 199 (40 %) as true and
301 (60 %) as false dependencies.

We split the dataset into two subsets using a 70/30 ra-
tio, ensuring stratification such that each subset maintains
proportional representation of dependencies across different
projects. The larger dataset, consisting of 350 configuration
dependencies, is used to investigate whether RAG enables
effective dependency validation. The smaller dataset, contain-
ing 150 configuration dependencies, serves as an unseen test
set to evaluate the refined RAG variant’s ability to reliably
validate configuration dependencies. Both subsets maintain a
distribution of approximately 40 % true positives and 60 %
false positives. As a notable contribution of this work, we
make this entire dataset available.

RAG Variants: A possible confounding factor in our study
represents the assembly of the RAG system, as alternative
components can be chosen and may affect result accuracy.
Hence, we implemented eight different RAG variants differing
in three components (embedding model, re-ranking algorithm,
and number of chunks). The RAG variants are shown in
Table II. In our study, we conduct all experiments on all
variants, but report only on the best due to space constraints.

Baselines: To asses the effectiveness of our RAG variants,
we compare their validation abilities against vanilla LLMs.
We leverage six state-of-the-art LLMs, including two propri-
etary LLMs (GPT-4o and GPT-4o-mini) and four open-source
LLMs (Deepseek-r1:70b, Deepseek-r1:14b, Llama3.1:70b,
Llama3.1:8b). A summary of the LLMs with their alias and
other properties can be found in Table III. Throughout the
remainder of the paper, we refer to each model by its alias. To
balance creativity and determinism, we set the temperature of
all models to 0.5 and repeated each prompt with identical con-
tent multiple times. This frequency voting mechanism ensures
a higher robust and consistency than any single deterministic
response [39], following best practices of self-consistency
chain of thought [36] and multi-path reasoning [40].

A comparison against existing dependency-detection
tools [3, 9] is, unfortunately, not possible as there is no
publicly available tool applicable that explicitly targets
configuration dependencies across multiple technologies.
Moreover, we are not aware of any existing ML method (e.g.,
Bert) that is applied to dependency validation. Implementing
such a baseline would require a ground truth of validated
dependencies for each technology pair for fine-tuning. This

is practically infeasible to achieve due to the combinatorial
explosion of cross-technology dependencies.

TABLE II: Comparison of RAG variants by embedding model,
embedding dimensionality (Embed. Dim.), reranking method
(Reranking), and top-N retrieved results (Top N).

ID Embedding Model Embed. Dim. Reranking Top N

R1 text-embed-ada-002 1536 Sentence Transformer 5
R2 text-embed-ada-002 1536 Sentence Transformer 3
R3 text-embed-ada-002 1536 Colbert Rerank 5
R4 text-embed-ada-002 1536 Colbert Rerank 3
R5 gte-Qwen2-7B-instruct 3584 Sentence Transformer 5
R6 gte-Qwen2-7B-instruct 3584 Sentence Transformer 3
R7 gte-Qwen2-7B-instruct 3584 Colbert Rerank 5
R8 gte-Qwen2-7B-instruct 3584 Colbert Rerank 3

TABLE III: Comparison of LLMs by parameter count
(# Params, in billions), maximum context length (Context Len.,
in tokens), and open-source status (Open Src., ✓= yes).

Alias Full Model Name # Params Context Len. Open Sourc.

4o gpt-4o-2024-11-20 - 128 k ✗
4o-mini gpt-4o-mini-2024-07-18 - 128 k ✗
DSr:70b deepseek-r1:70b 70B 131 k ✓
DSr:14b deepseek-r1:14b 14B 131 k ✓
L3.1:70b llama3.1:70b 70B 8k ✓
L3.1:8b llama3.1:8b 8B 8k ✓

Context Sources: Data on configuration dependencies is
typically scarce, as dependencies are rarely explicitly docu-
mented and almost never specify dependencies between op-
tions, neither within the same technology nor across different
technologies [41, 6]. Hence, developers often resort to alter-
native sources, such as man pages, community forums, such
Stack Overflow, or broader Web searches [42, 43]. Beyond
public documentation, project-specific details, such as envi-
ronment settings or best practices, are sometimes embedded
in project repositories, issue trackers, or discussion threads
within version control platforms.

To address the challenges in selecting relevant context
sources, we incorporate multiple widely used context sources,
including official technology documentation, Stack Overflow
posts, GitHub repositories, and Web search results. We sys-
tematically scraped data from the initial technologies used for
project selection, focusing on their configuration files, their
GitHub repositories, and the top 100 Stack Overflow posts for
each technology pair. All these sources were collected prior to
generation queries (i.e., representing static context), whereas
the Web (i.e., dynamic context) was scraped dynamically for
each generation query. The rational of this selection is to
replicate developer behavior when validating configuration
dependencies. We provide all retrieved context sources, in-
cluding Stack Overflow posts, tech documents, and GitHub
repositories, on our supplementary website.

Evaluation Metrics: We measure the effectiveness (or per-
formance) of our RAG system in validating configuration de-
pendencies using widely used classification metrics: precision,
recall, and F1-score. Precision represents the proportion of true

6



dependencies (TP) among positively labeled ones (TP + FP),
while recall reflects the proportion of true dependencies among
all actual dependencies (TP + FN). These metrics highlight
the trade-off between identifying as many true dependencies
as possible (recall) and ensuring the correctness of positively
labeled dependencies (precision). High precision and recall
are therefore crucial for trustworthy and reliable validation
with LLMs. The F1-score, the harmonic mean of precision
and recall, provides a single scalar for better comparability.

To measure relevance of context information for a con-
figuration dependency, we use the relevance score provided
by Pinecone. The metric is calculated using the dot product
from the dense and sparse vectors of the retrieval query and
the vector database (the embedded static and dynamic context
information). This way, we obtain a measure of how closely
these vectors are in terms of their direction and, thus, how
similar they are. More similar vectors get higher scores and
the context information is, thus, interpreted as more relevant
for the configuration dependency it was retrieved for.

We refrain from using RAGAS metrics [44] in our eval-
uation for three reasons: (1) Our primary focus is to asses
the validation effectiveness in a typical classification task.
Hence, classification metrics capture the true goal of the task.
(2) Instead of relying on a set of quantitative metrics for
failure analysis and context relevance evaluation, we employ
an in-depth qualitative manual analysis, which yields concrete
actionable insights and root causes of failures. (3) RAGAS
incurs a high cost when evaluating a large number of LLM
queries. Our preliminary studies indicated that its metrics are
highly sensitive to the choice of LLM and often produce
unreliable results due to LLMs’ partial non-compliance with
the expected data format of the RAGAS framework.

V. RESULTS

We first present the results of RQ1.1-1.2 regarding the valida-
tion effectiveness of vanilla LLMs compared to RAG and the
retrieved contextual information. We then present validation
failure categories to identify key information for effective
dependency validation, answering RQ2.1-2.2. Note that we only
report the results for the best performing RAG variant (R1),
while the validation results for the remaining RAG variants
are available on our supplementary website.

TABLE IV: Validation effectiveness of vanilla LLMs (“w/o”)
and the best performing RAG variant R1.

Precision Recall F1-Score
Model w/o R1 w/o R1 w/o R1

4o 0.89 0.86 0.46 0.61 0.61 0.71
4o-mini 0.76 0.60 0.18 0.78 0.29 0.68
DSr:70B 0.76 0.74 0.59 0.73 0.66 0.74
DSr:14B 0.84 0.66 0.56 0.46 0.67 0.54
L3.1:70b 0.70 0.65 0.45 0.34 0.55 0.45
L3.1:8b 0.52 0.53 0.52 0.34 0.52 0.41

Mean 0.75 0.67 0.46 0.54 0.55 0.59
Best 0.89 0.86 0.59 0.78 0.67 0.74

A. RAG for Dependency Validation

RQ1.1: Validation Effectiveness of Vanilla LLMs and RAG:
We validated 350 manually labeled configuration dependencies
of a cross-technology stack from ten real-world software
projects with six state-of-the-art vanilla LLMs and eight dif-
ferent RAG variants. Table IV shows the precision, recall, and
F1-score for each vanilla LLM and the best performing RAG
variant R1 with the same underlying models.

Overall, our results demonstrate solid validation capabilities
of vanilla LLMs for configuration dependencies, indicated by
F1-scores ranging from 0.52 to 0.67, with both DeepSeek-R1
models outperforming the other models. However, the results
are not consistent: all models exhibit higher precision than
recall, except L3.1:8b. That is, we observe a precision mostly
in the ranges between 0.6 and 0.8, whereas 4o achieves the
highest precision at the cost of recall and DSr:70B achieves
the highest recall at the cost of precision. Notably, DSr:14B
matches and even surpasses the validation capabilities of
larger models in terms of F1-score without additional context
information.

The best performing RAG variant R1 shows clear im-
provements for 4o, 4o-mini, and DSr:70B, with the most
substantial gain observed for 4o-mini, where the F1-score more
than doubles. Conversely, the vanilla LLMs outperform R1
for DSr:14B, L3.1:70b, and L3.1:8b. Moreover, we observe
an interesting pattern: the precision tends to drop for all
models with additional context, but recall only increases
for both GPT models. This means that all LLMs perform
slightly worse in correctly identifying true dependencies with
additional context. Only both GPT models no longer miss
as much dependencies than before. This mixed picture is a
strong indicator that even plausible context information is not
always helpful for this task and does not generally improve the
validation abilities of LLMs. It also demonstrate that this task
is quite challenging for LLMs as factual relevant information
seem to be not explicitly available such that the context may
increase noise for an LLM rather than providing meaningful
information.

0 1 2 3 4
Top N Slot

github

so-posts

tech-docs

webCo
nt

ex
t S

ou
rc

e 13% 32% 41% 41% 44%

7% 5% 3% 7% 6%

14% 11% 13% 9% 12%

67% 52% 43% 44% 38%
0.2

0.4

0.6

Fig. 3: Usage of context sources for RAG variant R1.

RQ1.2: Retrieved Contextual Information: In Figure 3, we
highlight the fraction of sources that the best performing RAG
variant R1 has deemed relevant for the query and submitted
to one of five context slots. Web search dominates, especially

7



in the first two slots, likely due to its broad coverage and up-
to-date information. GitHub information appears in the latter
context slots, indicating that RAG deems project-specific infor-
mation to be relevant for dependency validation. Interestingly,
technology documentation appear less frequently, suggesting
that they lack details needed for validation. Similarly, the
low selection rate of Stack Overflow posts implies that user
discussions and troubleshooting insights may be less aligned
with explicit configuration dependencies or they do not align
with the search process of vector databases. This underpins
the scarcity of explicit dependency-related information in these
context sources.

We also calculated the average relevance scores for each
context slot in R1. Notably, R1 shows continuously negative
relevance scores, ranging from -2.91 in the first slot to -7.68
in the fifth slot. This may indicate that the metric does not
capture the essence of relevance to this task. Since much of
the retrieved context is irrelevant, it likely introduces noise
rather than meaningful information, regardless of the source
from which it was obtained. Also interesting, when comparing
these values to other RAG variants (not shown here), we find
that other variants have a positive relevance scores despite
the lower accuracy and recall. Hence, we refrain from over-
interpreting this metric and point to the discussion.

Summary: Answering RQ1.1, vanilla LLMs have a
high precision for identifying valid configuration de-
pendencies, however, at the cost of missing many true
dependencies. By contrast, the additional context of a
RAG system leads to a higher recall but comes with a
reduced precision. So, both approaches shine for different
aspects. For RQ1.2, we found that Web search and
GitHub sources are most often used as a context sources.
This diminishes, at least partly, the importance of Stack
Overflow posts and technology documentation.

B. Types of Information Needed for Dependency Validation

RQ2.1: Validation Failures: In total, we reviewed 1192
validation failures from vanilla LLMs and R1 and derived
eight distinct failure categories. We summarize the failure
categories with a brief description in Table V and present their
distribution across the vanilla LLMs and R1 in Table VI. Due
to space constraints, we refer for concrete examples to the
supplementary website.

A key observation is that some failure categories are more
prevalent in certain models, indicating varying degrees of com-
petency in dependency validation. Notably, 4o demonstrates a
strong ability to validate dependencies in the Port Mapping and
Independent Technologies and Services categories, whereas all
other LLMs struggle with these dependencies. This suggests
that larger and more advanced models may possess a better
grasp of infrastructure-level dependencies, likely benefiting
from broader and more comprehensive training data. How-
ever, there are also failure categories in which all LLMs
encounter significant difficulties, particularly in the Inheri-

TABLE V: Eight failure categories derived from a qualitative
analysis of failures from vanilla LLMs and RAG variant R1.

Category Description

Inheritance
and
Overrides

This category includes validation failures due to Maven’s
project inheritance, which allows modules to inherit and
override configurations from a parent module, such as general
settings, dependencies, plugins, and build settings.

Configuration
Consistency

Often configuration values are the same across different
configuration files, which often leads to dependencies, but
sometimes only serves the purpose of consistency. In this cat-
egory, LLMs confuse equal values for the sake of consistency
with real dependencies.

Resource
Sharing

Resources, such as databases or services can be shared across
modules or used exclusively by a single module. Without
additional project-specific about available resources, LLMs
struggle to infer whether resources are shared or used exclu-
sively by a single module.

Port
Mapping

Ports of services are typically defined in several configuration
files of different technologies, creating equality-based config-
uration dependencies. However, not all port mappings have to
be equal (e.g. a container and host port in docker compose).

Naming
Schemes

Software projects often use ambiguous naming schemes for
configuration options and their values. These ambiguities
result from generic and commonly used names (e.g., project
name) that may not cause configuration errors if not consistent
but can easily lead to misinterpretation by LLMs.

Context
(Avail-
ability,
Retrieval,
and
Utilization)

Failures in this category are either because relevant informa-
tion is missing (e.g. not in the vector database or generally
not available to vanilla LLMs), available in the database but
not retrieved, or given to the LLM but not utilized to draw
the right conclusion.

Independent
Technolo-
gies and
Services

In some cases (e.g. in containerized projects) different com-
ponents, such as services, are isolated by design. In these
cases the configuration options between these components are
independent, if not explicitly specified.

Others This category contains all validation failures where the LLMs
fail to classify the dependencies correctly that can not be
matched to any other category and share no common patterns.

tance and Overrides and Configuration Consistency category.
These categories consistently exhibit the highest failure counts
across all models, highlighting a fundamental limitation in how
LLMs capture hierarchical relationships in software projects
and configuration dependencies due to their highly project- and
technology-specific nature. Such information is often encoded
in internal documentation, such as wikis or internal knowledge
bases. This suggest that pre-training data may be insufficient in
covering project-specific nuances, necessitating the integration
of project-specific details.

When comparing vanilla LLMs to their RAG counterpart,
we observe that 4o, 4o-mini, and DSr:70b produce less fail-
ures, as they benefit from additional context indicated by an
increase in F1-score by 16.4 %, 134.5 %, and 12.1 %. The
remaining models (DSr:14b, L3.1:70b, and L3.1:8b) show an
increase in validation failures. This aligns with our earlier ob-
servations, where validation effectiveness improves for larger
LLMs and degrades for smaller ones.

RQ2.2: Special Information for Dependency Validation:
Based on the failure categories’ characteristics, we derived

8



TABLE VI: Statistics of failure categories of vanilla LLMs and the RAG variant R1.

Vanilla LLMs R1
Failure Category 4o 4o-mini DSr:70b DSr:14b L3.1:70b L3.1:8b 4o 4o-mini DSr:70b DSr:14b L3.1:70b L3.1:8b

Inheritance and Overrides 33 54 34 34 48 41 32 27 26 38 55 56
Configuration Consistency 29 34 22 20 31 41 25 36 19 34 34 43
Resource Sharing 3 3 4 2 4 5 4 8 6 3 3 6
Naming Schemes 1 0 0 1 0 3 0 2 0 3 0 2
Port Mapping 0 7 6 2 2 8 1 8 4 2 2 5
Context (Availability, Retrieval, Utilization) 13 13 7 8 8 4 3 4 5 12 7 8
Independent Tech./Services 0 1 3 1 0 10 0 8 4 4 2 2
Others 3 10 7 8 10 21 3 8 8 8 13 11

Total 82 121 83 76 103 133 68 101 72 104 116 133

three types of information LLMs require to better validate
dependencies: (1) project-specific information, such as de-
tails about the project structure, implementation details, and
available resources; (2) a precise and unambiguous prompt;
and (3) examples of correct and incorrect classifications of
similar dependencies (i.e., few-shot prompting [45]). Project-
specific information particularly may reduce failures in the
categories Inheritance and Overrides and Resource Sharing.
A revised prompt may avoid confusions about the consistency
of configuration values. Since this refinement is also applicable
to the vanilla LLMs, we include it in the evaluation, yielding
a refined baseline. Finally, examples of similar dependencies
may increases the understanding and validation abilities of
LLMs for certain dependencies.

We refined RAG variant R1 as follows: (1) For each
subject system, we manually extracted the project structure,
implementation details, and relevant resources from its GitHub
repository. This information was then injected into the prompt
at retrieval time, using the project name which is associated
with the dependency under validation. (2) We refined the
validation prompt to make the definition of configuration de-
pendencies more precise and to avoid any ambiguity regarding
the consistency of values. We apply this refinement also to
the vanilla LLMs to have a sound comparison as the baseline
may profit from this improvement as well. (3) For each
failure category, we curated two representative dependencies,
one correctly and one incorrectly classified, and retrieved the
two most similar examples for each validation prompt using
cosine similarity. We ensured that these dependencies were not
present in the dataset of dependencies to prevent data leakage.
To not jeopardize the validity of the results, we evaluate the
final validation effectiveness of both the refined vanilla LLMs
and the refined RAG variant R1 on an unseen dataset of
150 real-world configuration dependencies. The final revised
version of our validation prompt for the vanilla LLMs and
RAG variant R1 can be found on our supplementary website.

Table VII presents the final validation scores for all studied
LLMs and the refined RAG variant R1 on an unseen dataset.
There are three notable observations: (1) The refined RAG
variant R1 consistently outperforms the refined vanilla LLM
baseline in all cases, achieving improvements of precision by
35 % and recall by 133 % over vanilla LLMs. This clearly
shows that the new information based on the failure categories

TABLE VII: Validation effectiveness of refined vanilla LLMs
(“w/o”) and the refined RAG variant R1. ∆ represents the
change in percent.

Models Precision Recall F1-Score
w/o R1 ∆ w/o R1 ∆ w/o R1 ∆

4o 0.91 0.94 3.3 0.34 0.80 135.3 0.50 0.87 74.0
4o-mini 0.00 0.77 N/A 0.00 0.59 N/A 0.00 0.67 N/A
DSr:70B 0.78 0.82 5.1 0.46 0.83 80.4 0.58 0.82 41.4
DSr:14B 0.66 0.87 31.8 0.31 0.67 116.1 0.42 0.75 78.6
L3.1:70b 0.75 0.80 6.7 0.25 0.74 196.0 0.37 0.77 108.1
L3.1:8b 0.59 0.83 40.7 0.43 0.39 -9.3 0.50 0.53 6.0

Mean 0.62 0.84 35.5 0.30 0.70 133.3 0.40 0.74 85.0

Best 0.92 0.94 2.2 0.46 0.83 80.4 0.58 0.87 50.0

significantly improve RAG’s effectiveness for dependency
validation. (2) 4o has a high precision, but still fails to detect a
large portion of actual dependencies. This discrepancy here to
other models and the RAG system is substantial, emphasizing
not only the importance of relevant context, but also that
powerful models alone are insufficient for complex, real-world
tasks. (3) 4o-mini did not detect any true positives and false
positives with the revised prompt, resulting in precision, recall,
and F1-score values of zero. To verify this phenomenon, we
validated the unseen configuration dependencies with 4o-mini
twice, but the results did not change. Such a catastrophic break
down in performance is remarkable and we are not aware of
any other study with a similar observation. Such a dependence
on the prompt phrasing is dangerous especially for production
systems.

Summary: Answering RQ2.1, we identified eight distinct
failure categories in validating dependencies, most of
which are project- and technology specific. Hence, using
information solely based on pre-training of LLMs is often
insufficient in practice when specifics of projects must be
taken into account. For RQ2.2, we found that incorporat-
ing this specific information substantially increased the
validation effectiveness of LLMs, with improvements of
precision up to 35 % and recall up to 133 % over vanilla
LLMs.

9



VI. DISCUSSION

Dependency Validation Effectiveness of LLMs: The valida-
tion ability of vanilla LLMs varies significantly. But also RAG
systems have, contrary to their praise, small or even negative
impact on the validation performance compared to vanilla
LLMs. This suggests that simply adding context information
— despite being related and used by developers for the same
task — does not guarantee a better validation performance.
This in line with related work [46] that an unrefined RAG
system (e.g., with suboptimal retrievers or context sources)
can degrade the performance of LLMs. Moreover, we have not
seen substantial changes in the validation performance among
different RAG variants. Although we cannot rule out that our
variations might be too conservative, we expect that replacing
import retrieval components should have a recognizable effect
on validation performance if they matter. However, it seems
that the choice of contextual information is substantially more
important than the RAG assembly itself.

Refinements of RAG for Dependency Validation: Poor
performance of RAG systems can be caused by several factors:
The retriever may fail to retrieve relevant context, the selected
context sources may lack necessary information, or the prompt
could be too vague, leaving room for misinterpretations. Iden-
tifying the sources of such failures is essential when develop-
ing RAG systems, which is why we emphasize the importance
of a qualitative analysis of failure for every development of
a RAG system. This also helps to derive specific measures
and relevant changes for effective refinements of the RAG
system. However, a qualitative analysis is inherently task-
specific and requires domain knowledge, as well as manual
effort to interpret nuanced failure patterns, making it a labor-
intensive but essential component in the development of every
RAG system. While partial automation (e.g., labeling support
or clustering failure cases) may exist, the interpretative nature
and required expertise for such qualitative analyses currently
resists their full automation. For our task, clarifying the valida-
tion task alone does not guarantee better performance, it is the
project-specific information and examples of similar classified
dependencies available in a RAG system that achieves the
highest scores.

In addition to a qualitative analysis, tuning key parame-
ters in the RAG pipeline, such as chunk size, overlap, and
splitting strategy, can also affect validation performance. In
our experiments, we used a chunk size of 256 tokens with a
10-token overlap, chosen based on preliminary trials. Varying
this parameter produced only marginal performance changes
unless extreme values were used. Future work will explore
more adaptive approaches, such as content-aware or recursive
chunking, which can further improve the retrieval quality but
not weaken our current results.

Temperature Sensitivity: Our results clearly show that RAG
with the correct context information is a suitable technique to
reliably validate configuration dependencies. However, specific
factors such as the temperature may affect accuracy. To deter-
mine the temperature sensitivity of the best performing RAG

system R1, we conducted a post-hoc sensitivity analysis. We
use 10 equally distributed samples from the validation set and
vary temperature from 0.0 to 1.0 in 0.2 steps. Table VIII shows
the precision, recall, and F1-Score of R1 across the LLMs
and different temperature values. We see that most models
exhibit stable performance with only minor fluctuations across
different temperature values. In particular, both proprietary
GPT models maintained perfect precision across all tempera-
ture values, with only slight recall variations leading to occa-
sional perfect F1-scores. Open-source models showed greater
variability, primarily in recall. For DSr:70B and DSr:14B,
precision remained perfect across different temperature values,
but recall fluctuated more noticeably with higher temperatures,
indicating reduced sensitivity at intermediate temperatures but
degradation at higher values. Similarly, L3.1:70B was steady
until recall declined at higher temperature values, whereas the
smallest model, L3.1:8B, remained largely stable.

Across all models, precision remained consistently high,
while recall was the primary source of variation. Higher tem-
perature values tended to reduce recall rather than precision,
meaning LLMs were more likely to miss relevant dependen-
cies than to produce false positives. This effect was negligible
for both GPT models but more pronounced for some open-
source models, suggesting that low-to-moderate temperatures
are preferable for stable performance. Overall, the propri-
etary GPT models were practically insensitive to temperature
changes, maintaining consistently high precision and stable
recall. By contrast, the open-source models exhibited greater
susceptibility to higher temperatures, where recall fluctuations
led to noticeable performance degradation. This indicates a gap
in robustness: while proprietary models deliver stable accuracy
across temperature settings, open-source models benefit from
careful temperature tuning to ensure reliable performance.

Threats to Validity: A threat to internal validity is potential
bias in our manual labeling of configuration dependencies. We
mitigated this through a rigorous review processes involving
multiple authors, especially for borderline cases. We further
mitigated subjectivity in our qualitative analysis of failures
by independent coding of multiple researchers. Another threat
to internal validity concerns the dynamic Web scraping. As
context in the Web can change during the time of our
experiments, it might introduce a time-dependent factor in
our experiments. To counter this, for each dependency in the
experiment, we scrape the dynamic context once and reuse it
for all LLMs. Moreover, the selected chunk size and overlap
used for populating the vector database is based on preliminary
experiments that aimed at balancing context granularity and
length. However, this only may leave further improvement
for a RAG system, underpinning our proposal to use this
technology for dependency validation.

The main threat to external validity concerns the general-
izability of our findings beyond the Spring Boot ecosystem.
We carefully selected Spring Boot projects specifically to
mitigate this exact threat for several reasons: First, Spring Boot
projects incorporate a broad range of technologies and address
practically relevant, industry-scale challenges. Evaluating this

10



TABLE VIII: Sensitivity analysis for R1 with different temperature (T ) values. P = Precision, R= Recall, and F1 = F1-Score.

Models
T = 0.0 T = 0.2 T = 0.4 T = 0.6 T = 0.8 T = 1.0

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

4o 1.00 0.80 0.89 1.00 0.80 0.89 1.00 0.80 0.89 1.00 1.00 1.00 1.00 0.80 0.89 1.00 0.80 0.89
4o-mini 1.00 0.60 0.75 1.00 0.60 0.75 1.00 0.60 0.75 1.00 0.60 0.75 1.00 1.00 1.00 1.00 0.60 0.75
DSr:70B 1.00 0.80 0.89 1.00 0.60 0.75 1.00 0.80 0.89 1.00 0.80 0.89 1.00 0.60 0.75 1.00 0.60 0.75
DSr:14B 1.00 0.60 0.75 1.00 0.60 0.75 0.75 0.60 0.67 1.00 0.60 0.75 1.00 0.40 0.57 1.00 0.60 0.75
L3.1:70B 1.00 0.80 0.89 1.00 0.80 0.89 1.00 0.80 0.89 1.00 0.80 0.89 1.00 0.60 0.75 1.00 0.40 0.57
L3.1:8B 1.00 0.60 0.75 1.00 0.60 0.75 1.00 0.60 0.75 1.00 0.60 0.75 1.00 0.60 0.75 1.00 0.80 0.89

Mean 1.00 0.70 0.82 1.00 0.67 0.80 0.96 0.70 0.81 1.00 0.73 0.84 1.00 0.67 0.79 1.00 0.63 0.77
Best 1.00 0.80 0.89 1.00 0.80 0.89 1.00 0.80 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.89

ecosystem is therefore comparable to other enterprise ecosys-
tems, such as Python/Django, with their similarly structured
settings.py and .env files. More importantly, providing a solu-
tion just for the Spring Boot ecosystem alone has already an
impact on practice.

Second, focusing on a single ecosystem increases the relia-
bility of our ground truth and ensures a sound evaluation. Since
no validated dataset of configuration dependencies exists,
creating one demands deep expert knowledge across multiple
frameworks and a substantial number of repositories per
ecosystem, a combination that is infeasible given the runtime
and cost of evaluation. Our study thus delivers the largest
manually annotated dataset of configuration dependencies for
a practically relevant ecosystem.

Third, our entire RAG architecture is designed to be
technology-agnostic: the ingestion, retrieval, and generation
pipelines are not tied to any specific framework. This con-
trasts with classical ML or LM methods (e.g., BERT), which
require ground truth training data for fine-tuning, which is
not only non-existent but also infeasible for a practical ap-
proach, considering the number of technologies out there. By
dynamically ingesting context sources, our approach can adapt
to other ecosystems without retraining, and we, thus, argue
that this even improves generalizability compared to existing
techniques.

Another threat to external validity comes from the selected
LLMs and embedding models. We selected models to provide
a representative evaluation across the current state of the
art, including flagship proprietary LLMs, leading open-source
alternatives, and the best-performing embedding models avail-
able at the time of experimentation to ensure a robust and
timely evaluation.

The threats to construct validity arise from using standard
but popular classification metrics, which may not capture all
nuances of validation quality. We addressed this by com-
plementing quantitative analysis with qualitative examination
of failures. A similar threat represents the relevance score
provided by Pinecone, which computes the vector similarity
of the query with the retrieved context. As the dot product
is used for the relevance score, this might not always align
with the semantic similarity, as recent studies on the nor-
malized dot product has shown [47]. Since we also found a
discrepancy between the score and the actual performance (i.e.,

negative relevance score for the best RAG), we are more in
line with [47] and would resort from over-interpreting these
numbers. This also supports our caution against automatically
computed RAG metrics, such as RAGAs.

VII. CONCLUSION

Validating configuration dependencies is a complex real-
world task. Recent advancements in LLMs offer a promising
direction for automated, technology-agnostic dependency val-
idation. However, prior work highlights that LLMs struggle in
reliably validating configuration dependencies. We propose a
novel RAG system for dependency validation that integrates
project- and technology-specific context sources and evaluate
whether it can improve LLM-based validation of configuration
dependencies, as well as what contextual information are
needed to overcome the static knowledge base of LLMs.

Our evaluation shows that vanilla LLMs miss many depen-
dencies, but are less prone to misclassifications than RAG.
However, when enriched with special information derived
from a qualitative analysis of validation failures, such as
project-specific details, precise and unambiguous prompts, as
well as examples of similar dependencies, our proposed RAG
system achieves substantially more accurate validation results
for all models, with improvements of precision by 35 % and
recall by 133 % over vanilla LLMs. The key takeaway is that
merely adding context does not automatically enhance the val-
idation effectiveness of LLMs. Instead, a systemic refinement
of RAG components and particularly context sources is nec-
essary to unleash the full potential of RAG for configuration
dependency validation.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Saxon State Ministry for
Science, Culture and Tourism (SMWK) through the “Center
for Scalable Data Analytics and Artificial Intelligence Dres-
den/Leipzig” (ScaDS.AI) and by the European Social Fund
(ESF) together with the German state of Saxony under grant
number A.100760692 (Project: Teaching-AI).

REFERENCES

[1] Mohammed Sayagh, Noureddine Kerzazi, and Bram
Adams. On cross-stack configuration errors. In Pro-
ceedings of the International Conference on Software

11



Engineering (ICSE), ICSE ’17, page 255–265. IEEE
Press, 2017.

[2] Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund.
Dimensions of software configuration: on the configu-
ration context in modern software development. page
338–349. ACM, 2020.

[3] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shan-
shan Li, and Tianyin Xu. Understanding and discovering
software configuration dependencies in cloud and data-
center systems. In Proceedings of the ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(ESEC/FSE), page 362–374. ACM, 2020.

[4] Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czar-
necki. A user survey of configuration challenges in linux
and ecos. In Proceedings of the International Workshop
on Variability Modeling of Software-Intensive Systems
(VaMoS), page 149–155. ACM, 2012.

[5] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robin-
son. Configurations everywhere: implications for testing
and debugging in practice. ICSE Companion 2014, page
215–224. ACM, 2014.

[6] Ariel Rabkin and Randy Katz. Static extraction of
program configuration options. In Proceedings of the
International Conference on Software Engineering, page
131–140. ACM, 2011.

[7] Ben Maurer. Fail at scale: Reliability in the face of rapid
change. Queue, 13(8):30–46, 2015.

[8] Chunqiang Tang, Thawan Kooburat, Pradeep
Venkatachalam, Akshay Chander, Zhe Wen, Aravind
Narayanan, Patrick Dowell, and Robert Karl. Holistic
configuration management at facebook. page 328–343.
ACM, 2015.

[9] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan
Bansal, Chandra Maddila, B. Ashok, Sumit Asthana,
Christian Bird, and Aditya Kumar. Rex: preventing bugs
and misconfiguration in large services using correlated
change analysis. In Proceedings of the Usenix Confer-
ence on Networked Systems Design and Implementation,
page 435–448. USENIX Association, 2020.

[10] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,
Lakshmi N. Bairavasundaram, and Shankar Pasupathy.
An empirical study on configuration errors in commer-
cial and open source systems. In Proceedings of the
ACM Symposium on Operating Systems Principles, page
159–172. ACM, 2011.

[11] Tianyin Xu and Yuanyuan Zhou. Systems approaches to
tackling configuration errors: A survey. ACM Comput.
Surv., 47(4), jul 2015.

[12] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama, and
Kurnia J. Eliazar. Why does the cloud stop computing?
lessons from hundreds of service outages. In Proceedings
of the ACM Symposium on Cloud Computing, page 1–16.
ACM, 2016.

[13] Ariel Rabkin and Randy Howard Katz. How hadoop

clusters break. IEEE Software, 30(4):88–94, July 2013.
[14] Sebastian Simon, Nicolai Ruckel, and Norbert Siegmund.

Cfgnet: A framework for tracking equality-based config-
uration dependencies across a software project. IEEE
Transactions on Software Engineering, 49(8):3955–3971,
Aug 2023.

[15] Wei Chen, Heng Wu, Jun Wei, Hua Zhong, and Tao
Huang. Determine configuration entry correlations for
web application systems. In 2016 IEEE 40th An-
nual Computer Software and Applications Conference
(COMPSAC), volume 1, pages 42–52, June 2016.

[16] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng,
Tianwei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar
Pasupathy. Do not blame users for misconfigurations.
In Proceedings of the TACM Symposium on Operating
Systems Principles, page 244–259. ACM, 2013.

[17] Peng Huang, William J. Bolosky, Abhishek Singh, and
Yuanyuan Zhou. Confvalley: a systematic configuration
validation framework for cloud services. In Proceedings
of the European Conference on Computer Systems. ACM,
2015.

[18] Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer,
and Canturk Isci. Usable declarative configuration spec-
ification and validation for applications, systems, and
cloud. In Proceedings of the ACM/IFIP/USENIX Mid-
dleware Conference: Industrial Track, page 29–35. ACM,
2017.

[19] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron
Shim, and Ruzica Piskac. Synthesizing configuration file
specifications with association rule learning. Proc. ACM
Program. Lang., 1(OOPSLA), 2017.

[20] Mark Santolucito, Ennan Zhai, and Ruzica Piskac. Prob-
abilistic automated language learning for configuration
files. In Proceedings of the Internation Conference
on Computer Aided Verification, pages 80–87. Springer,
2016.

[21] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xi-
aolan Zhang, Niyu Ge, Vasanth Bala, Tianyin Xu, and
Yuanyuan Zhou. Encore: exploiting system environment
and correlation information for misconfiguration detec-
tion. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, page 687–700. ACM, 2014.

[22] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia
Zhang, Zhiyuan Cheng, Wanghu Chen, Mingjie Tang,
and Jianguo Wang. Gptuner: A manual-reading database
tuning system via gpt-guided bayesian optimization.
arXiv preprint arXiv:2311.03157, 2023.

[23] Xinmei Huang, Haoyang Li, Jing Zhang, Xinxin Zhao,
Zhiming Yao, Yiyan Li, Zhuohao Yu, Tieying Zhang,
Hong Chen, and Cuiping Li. Llmtune: Accelerate
database knob tuning with large language models. arXiv
preprint arXiv:2404.11581, 2024.

[24] Zhijie Liu, Yutian Tang, Meiyun Li, Xin Jin, Yun-
fei Long, Liang Feng Zhang, and Xiapu Luo. Llm-
compdroid: Repairing configuration compatibility bugs

12



in android apps with pre-trained large language models.
arXiv preprint arXiv:2402.15078, 2024.

[25] Shiwen Shan, Yintong Huo, Yuxin Su, Yichen Li, Dan Li,
and Zibin Zheng. Face it yourselves: An llm-based two-
stage strategy to localize configuration errors via logs.
arXiv preprint arXiv:2404.00640, 2024.

[26] Zehao Wang, Dong Jae Kim, and Tse-Hsun Chen. Iden-
tifying performance-sensitive configurations in software
systems through code analysis with llm agents. arXiv
preprint arXiv:2406.12806, 2024.

[27] Christian Bird, Denae Ford, Thomas Zimmermann,
Nicole Forsgren, Eirini Kalliamvakou, Travis Lowder-
milk, and Idan Gazit. Taking flight with copilot: Early in-
sights and opportunities of ai-powered pair-programming
tools. Queue, 20(6):35–57, jan 2023.

[28] Xinyu Lian, Yinfang Chen, Runxiang Cheng, Jie Huang,
Parth Thakkar, and Tianyin Xu. Configuration val-
idation with large language models. arXiv preprint
arXiv:2310.09690, 2023.

[29] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information
processing systems, 33:9459–9474, 2020.

[30] Vinod Ramachandran, Manish Gupta, Manish Sethi, and
Soudip Roy Chowdhury. Determining configuration pa-
rameter dependencies via analysis of configuration data
from multi-tiered enterprise applications. In Proceedings
of the International Conference on Autonomic Comput-
ing, page 169–178. ACM, 2009.

[31] Immanuel Trummer. Db-bert: A database tuning tool that
”reads the manual”. In Proceedings of the International
Conference on Management of Data, page 190–203.
ACM, 2022.

[32] Pinecone. Pinecone vector database. https://www.
pinecone.io/, 2025. Accessed: 2025-05-28.

[33] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. Chain-of-thought prompting elicits
reasoning in large language models. 35:24824–24837,
2022.

[34] Oana-Maria Camburu, Brendan Shillingford, Pasquale
Minervini, Thomas Lukasiewicz, and Phil Blunsom.
Make up your mind! adversarial generation of incon-
sistent natural language explanations. arXiv preprint
arXiv:1910.03065, 2019.

[35] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha
Ravichander, Eduard Hovy, Hinrich Schütze, and Yoav
Goldberg. Measuring and improving consistency in pre-
trained language models. Transactions of the Association
for Computational Linguistics, 9:1012–1031, 2021.

[36] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought
reasoning in language models. In Proceedings of the

International Conference on Learning Representations
(ICLR). OpenReview.net, 2023.

[37] Sebastian Simon, Alina Mailach, Johannes Dorn, and
Norbert Siegmund. A methodology for evaluating rag
systems: A case study on configuration dependency val-
idation. arXiv preprint arXiv:2410.08801, 2024.

[38] GitHub. Github topics. https://github.com/topics, 2025.
Accessed: 2025-05-28.

[39] Xinyu Lian, Yinfang Chen, Runxiang Cheng, Jie Huang,
Parth Thakkar, Minjia Zhang, and Tianyin Xu. Large lan-
guage models as configuration validators. In Proceedings
of the International Conference on Software Engineering
(ICSE), pages 1704–1716, 2025.

[40] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang,
Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and
Jirong Wen. A survey on large language model based
autonomous agents. Frontiers of Computer Science,
18(6):186345, 2024.

[41] Tianyin Xu, Vineet Pandey, and Scott Klemmer. An
hci view of configuration problems. arXiv preprint
arXiv:1601.01747, 2016.

[42] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh
Kochhar, Ahmed E Hassan, and Zhenchang Xing. What
do developers search for on the web? Empirical Software
Engineering, 22:3149–3185, 2017.

[43] Jitendra Josyula, Sarat Panamgipalli, Muhammad Us-
man, Ricardo Britto, and Nauman Bin Ali. Software
practitioners’ information needs and sources: A survey
study. In International Workshop on Empirical Software
Engineering in Practice (IWESEP), pages 1–6. IEEE,
2018.

[44] Shahul Es, Jithin James, Luis Espinosa-Anke, and Steven
Schockaert. Ragas: Automated evaluation of retrieval
augmented generation. arXiv preprint arXiv:2309.15217,
2023.

[45] Tom B Brown. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[46] Nihal Jain, Robert Kwiatkowski, Baishakhi Ray, Mu-
rali Krishna Ramanathan, and Varun Kumar. On miti-
gating code llm hallucinations with api documentation.
arXiv preprint arXiv:2407.09726, 2024.

[47] Harald Steck, Chaitanya Ekanadham, and Nathan Kallus.
Is cosine-similarity of embeddings really about simi-
larity? In Companion Proceedings of the ACM Web
Conference 2024, page 887–890. ACM, 2024.

13

https://www.pinecone.io/
https://www.pinecone.io/
https://github.com/topics

	Introduction
	Related Work
	Dependency Validation with RAG
	Context Ingestion
	Context Retrieval
	Validation Generation

	Experiment Setup
	Research Questions
	Operationalization

	Results
	RAG for Dependency Validation
	Types of Information Needed for Dependency Validation

	Discussion
	Conclusion
	Acknowledgements

