Noname manuscript No.
(will be inserted by the editor)

“Ok Pal, We Have to Code That Now”: Interaction
Patterns of Programming Beginners with a
Conversational Chatbot

Alina Mailach* : Dominik Gorgosch* -
Norbert Siegmund - Janet Siegmund

Received: date / Accepted: date

Abstract Context: Chatbots based on large language models are becoming
an important tool in modern software development, yet little is known about
how programming beginners interact with this new technology to write code
and acquire new knowledge. Thus, we are missing key ingredients to develop
guidelines on how to adopt chatbots for becoming productive at programming.
Objective: With our research, we aim at identifying these ingredients. Specif-
ically, we want to understand how programming beginners use conversational
chatbots when writing source code.

Method: To this end, we study programming beginners’ interaction with a
chatbot in a CS2 course while they were solving programming assignments.
Additionally, we evaluate the correctness of submitted solutions and compare
them to solutions of beginners who did not use a conversational chatbot.
Findings: We analyzed 756 prompts of 129 conversations, most of them fo-
cusing on code generation. Interestingly, conversations that contain prompts
asking for debugging or testing of code are linked with higher success rates,
indicating that deeper engagement with code leads to higher quality code.
Moreover, prompts without sufficient context often lead to unsatisfying re-
sults.

* Both authors contributed equally

A. Mailach
ScaDS.AI Dresden/Leipzig, Leipzig University, Leipzig, 04109, Germany
E-mail: alina.mailach@cs.uni-leipzig.de

D. Gorgosch
Chemnitz University of Technology, Chemnitz, 09107, Germany

N. Siegmund
ScaDS.AI Dresden/Leipzig, Leipzig University, Leipzig, 04109, Germany

J. Siegmund
Chemnitz University of Technology, Chemnitz, 09107, Germany

2 Alina Mailach et al.

Implications: While not surprising, this underpins the importance that pro-
gramming beginners need to know how to use chatbots, instead of merely
using it as code generators without investing time in code quality. Moreover,
companies should employ prompt guidelines, in which code quality prompts
might be enforced after a code generation prompt has been stated.

Keywords Al chatbot - programming beginners - prompting - interaction
patterns

1 Introduction

Code assistants, such as Copilot!, ChatGPT?, and CodeWhisperer? based
on Large language Models (LLMs) are becoming a central tool in modern
software development [20]. The astonishing speed at which this technology is
conquering industry leaves many important aspects unanswered. For instance,
studies show that the use of such tools may increase security risks [24] or could
even degrade developers’ productivity despite the hype around them [21].

A further important aspect that has received only little attention are pro-
gramming beginners. So far, the majority of studies on code assistants and
chatbots with human participants either concentrate on professional develop-
ers or recruit students for a specific task, such as studying security-related
programming tasks [29]. However, surprisingly little is known about how pro-
gramming beginners interact with code assistants, despite some suggestions [3,
18, 6], work in progress [25] and investigations [8,36,14] on how AI code gen-
eration could transform teaching.

In essence, we do not know typical interaction or conversation patterns
that programming beginners apply to solve a given task or whether these pat-
terns differ from professional developers. And, we do not know in which way
programming beginners may struggle with this new technology. Do they use
chatbots similar to a search engine? Do they search for explanations, or do
they just want to generate code to complete a task? And more fundamentally,
do chatbots in fact improve programming beginners coding? Answering these
questions is not only of paramount importance for new teaching concepts,
but also for industry when on-boarding inexperienced developers, be it for
novel technologies and languages or for first-time employment. Moreover, ca-
reer changers and no-code applications are becoming more and more prevalent
in industry. It is, thus, necessary to learn more about how these inexperienced
new programmers interact with conversational chatbots and how they can be
effectively integrated into the development process.

In this study, we set out to answer these questions with a large-scale human
study on 2nd semester CS students. Our key research goal is to identify interac-
tion and communication patterns of such programming beginners (i.e., having

! https://github.com/features/copilot
2 https://openai.com/blog/chatgpt
3 https://aws.amazon.com/codewhisperer/

Interaction Patterns of Programming Beginners with a Conversational Chatbot 3

Concept
Comprehension

Basic Programming Code

Knowledge Bug Identification Comprehension Code refinement

Code Generation Testing

Interpret the Write me the Let the method .
following code and preorder function [prior generated] How can | delete a | Can you test this

lain iti that outputs the + the t d node in a binary methods for
explain it in easy SRy G ie return the turnet treedlsn) T
language: [.]710) preorder traversal.(,p; 3T@Y-(@s)

Why did | get this
error message:

Is there a one line if

clause?,
(471) ["']1307)

Solution generation Tutoring

Fig. 1 Different prompt purposes of programming beginners with a conversational chatbot

already received basic programming classes), as well as possible struggles when
using chatbots. In a nutshell, we found that programming beginners who use
a chatbot score 21 % higher on implementation tasks than programming be-
ginners who do not use a chatbot. When analyzing further the interactions of
participants with the chatbot, we observe distinct conversation structures at
different levels of granularity, as shown in Figure 1: At the level of individual
prompts, we identified repeating prompting intentions, for example, to gen-
erate code or to test code; at the level of entire conversations, we identified
distinct structures (labeled S1 to S13) consisting of multiple prompts with the
overarching goal to generate a solution to complete a task or tutoring to gain
knowledge (highest level of granularity). Some of these interactions are more
successful (e.g., when testing or code refinement is contained), whereas others
are less successful for solving a programming task (e.g., when code generation
is the only purpose of a conversation).

Such a diversity of usage patterns opens up novel research opportunities for
software engineering education and practice: Our study identified code inves-
tigation activities as clear indicators of higher performance and code quality,
which might help to develop guidelines and tutorials supporting beginners in
efficiently utilizing chatbots. By contrast, prompts focused on learning basic
programming knowledge and concepts showed lower performance, which indi-
cates potential predictors for an early warning system, identifying struggling
beginners and providing tailored support.

In summary, we make the following contributions:

— A detailed study on how programming beginners use LLMs to learn pro-
gramming and the benefit and drawbacks they have from it.

— A definition of seven prompt purposes when programming beginners solve
programming tasks: code generation, code comprehension, concept com-
prehension, bug identification, testing, and requesting basic programming
knowledge.

— An overview of successful conversation patterns that are linked with higher
scores on programming assignments in a grading evaluation.

4 Alina Mailach et al.

— Causes for struggles when interacting with chatbots, that is, missing knowl-
edge on prompt engineering and missing familiarity with the capabilities
of an LLM.

— Identification of a need for teaching prompt design and engineering, cor-
roborating findings of previous studies [32,16], which count even for profes-
sional developers, indicating the impact of our results also for an industry
setting.

— We provide material and collected data of our study in a supplementary
repository?.

Our results have impact far beyond the teaching context alone, as they
can guide the development of the next generation of conversation-based code
assistants. Furthermore, we identified main sources of struggles and key ingre-
dients of successful conversations that are valuable in a professional setting.
This way, we can potentially improve developer productivity by recognizing
conversation patterns and guiding them toward a successful outcome.

2 Related Work

In the short time period in which LLMs have become powerful and accurate
enough to be used in real settings, there have been numerous studies involv-
ing human participants to analyze different aspects of LLMs when it comes to
programming and software development. We focus on papers with human par-
ticipants, separated into professional and educational context. In professional
contexts, studies evaluate how LLMs affect typical development activities, and
in educational context, studies evaluate the impact of LLMs on learning. We
can infer and relate insights from both settings to our findings. Finally, we
provide a brief comparison of our work to research endeavors for educational
chatbots prior to the rise of LLMs.

2.1 Professional Setting

Several studies find that developers evaluate programming assistants posi-
tively, including a study by Ross and others, in which developers liked specifi-
cally the high quality of responses and the potential impact on their productiv-
ity [28]. Vaithilingam and others find that programmers appreciate assistants
to provide starting points for development tasks [32]. This observation is in-
cluded in a grounded theory developed by Barke and others, and is called
exploration mode, in which the assistant is used primarily to find the next
steps in the implementation [1]. The complementary part of Barke and others’
theory describes developers in acceleration mode, in which they already know
exactly the following steps, and the assistant is expected to generate what the
developer has in mind.

4 https://github.com/mailach/0k-pal-we-have-to-code-that-now

Interaction Patterns of Programming Beginners with a Conversational Chatbot 5

Furthermore, Weisz and others report that, for translating code from Java
to Python, developers with Al assistance produced code with fewer errors
than when working alone [35]. Perry and others report that developers feel
confident in producing high-quality, secure code with an LLM [24]. However,
the results suggest that developers are overconfident and put too much trust
into the results of the LLM, as they actually produce less secure code compared
to developers without an LLM. Notably, a group of developers in Perry and
others’ study invested more time in designing useful prompts and carefully
evaluated the responses of an LLM, leading to fewer security vulnerabilities.

This shows that good prompt engineering is necessary, and also further
studies provide evidence in this line: Developers who lack prompt engineering
skills (in the sense of controlling the output for steering code suggestions for
specific functional and non-functional requirements) refrain from using pro-
gramming assistants [16]. Additionally, there are more reports on negative
impacts of LLMs on developers. Mozannar and others report that developers
need to spend considerable time in verifying responses of their programming
assistants [21], which requires expert knowledge and leads to increased de-
velopment time. In line with this observation, some developers struggle with
editing, debugging, and comprehending the source code generated by program-
ming assistants [32], or are even reluctant to do so, if the generated code does
not match the expectation of the developer [1]. This emphasizes that even
experts need to familiarize themselves with using programming assistants to
accomplish their tasks and need to find suitable ways to integrate them ben-
eficially in their workflows.

For programming beginners, learning programming with a programming
assistant might actually add a level of complexity, because they have to learn
how to define useful prompts and evaluate the prompts, all while acquiring
programming skills; thus, they lack experience to actually understand whether
a response is helpful or not, underpinning the necessity and relevance of our
study.

2.2 Educational Setting

Closest to our work are studies conducted by Prather and others, who observe
how students interact with LLMs in a CS1 course [26], and Kazemitabaar
and others, who extract interaction patterns from students using Codex in a
self-paced learning environment [12]. Both studies present interaction patterns
with LLMs, but from different perspectives. Prather and others focus on stu-
dents’ cognitive difficulties, to which we add insights by identifying beneficial
patterns and highlighting the need for teaching prompt engineering before us-
ing LLMs in classes. Thus, our qualitative analysis extends beyond a teaching
context.

Kazemitabaar and others examine interactions with Codex, an LLM that
translates natural language into code. While our study aligns with Kazemitabaar’s
findings on generating and refining code, the vanilla chatbot used by our par-

6 Alina Mailach et al.

ticipants enables a broader range of activities, such as generating explanations
for code and concepts. These additional capabilities are reflected in our results,
thereby extending the insights presented in these studies.

Looking into benefits of LLM-based tools for students, Choudhuri and
others find that students do not benefit significantly from using ChatGPT
when solving software engineering tasks. Instead, they find increased levels
of frustration, and cases of induced self-doubt [5]. Similarly, Shoufan finds
that students without prior knowledge perform equally or worse when using
ChatGPT to solve exam-like quiz questions [30]. Our study provides additional
insights by taking the conversations of students into account, giving more
insights into potential reasons for these observations.

Furthermore, Liu and others [17] explored the use of an LLM-based as-
sistant in an introductory computer science course, similar to our study but
with different objectives. They equipped students with a constrained chatbot
designed for explaining code, assessing code style, and responding to course-
related queries. Unlike in our study, their chatbot was explicitly configured to
avoid generating solutions, diverging from the unrestricted, vanilla chatbot we
used in our research. Additionally, Liu and others provide their chatbot over
the course of a semester for unrestricted use and evaluate it based on student
feedback and response accuracy. In contrast, our study was conducted in a
controlled setting where the chatbot was only available in in-person tutorials
and we collected participants submissions, which allows us to relate different
usage patterns to the quality of solutions. Frankford and others have explored
how students interact with an Al-tutor that gives feedback, integrated in an
automated programming assessment system [10]. Our study, in contrast, pro-
vides programming beginners with a chat interface that is not tied to code
and can be queried for any kind of questions, meaning students interaction
are more varied. This is also reflected in the in-depth interaction patterns
yielded by our qualitative analysis.

Notably, Nam and others propose a prompt-less interaction mode within
the IDE and find that especially professional developers benefit in task com-
pletion. Students, by contrast, did not experience significant benefits from
using the LLM-based tool [22]. Our study focuses directly on chat-interface
and students interactions, as these interfaces are now freely available for (and
are probably used by) students. Other studies also explore CS1 and CS2 prob-
lems, but without human participants. Denny and others found that LLMs
can solve most of the typical CS1 problems, and a smaller part with some mi-
nor modification to the prompts [7]. For typical CS2 problems (similar to our
tasks), an LLM can even outperform students in producing correct code [9].
Thus, if correctly used, LLMs can improve productivity. In our study, we focus
on qualitatively analyzing how this usage can look in detail. Further studies
show that LLMs can explain code in a helpful way depending on code com-
plexity and code length [19], such that even younger programmers (10 to 17
years) can successfully use chatbots with proper guidance [11], and that with
using natural-language prompts (in contrast to non-textual prompts or class
files), ChatGPT can be useful for programming beginners [23]. While farther

Interaction Patterns of Programming Beginners with a Conversational Chatbot 7

away from our focus, these studies still indicate that proper guidance in using
a code assistant seems to be key in its successful application. Thus, we cannot
just throw a chatbot to programmers and assume they know how to use it
properly. While this seems obvious, the reality is that there currently is no
real guidance, because we do not know how guidance should look like. With
our study, we identify key ingredients for such a guidance.

2.3 Educational Chatbots before LLMs

Prior to the rise of LLMs, several efforts were made to incorporate chatbots in
educational environments, particularly in computer science, as evidenced by
Kuhail and others meta-study [13]. This literature review reveals that most
of these early educational chatbots were primarily chatbot-driven, where the
chatbot steers the conversation, often limiting the user to predefined con-
versation paths or intents. This approach contrasts sharply with LLM-based
chatbots, which empower users with complete control over the conversation’s
direction, depth, and subject.

Closest to our study in this domain is the pilot research conducted by Ver-
leger and others, which examined user interactions with a chatbot based on
a question-answer database [33]. Mirroring our methodology, the study ana-
lyzes individual prompts (i.e., questions) sent to the chatbot, and finds that
students predominantly seek assistance with programming language specifics,
including the use of specific methods and basic knowledge on loops, conditions,
and algorithms. Unlike LLM-based chatbots such as ours, the chatbot in Ver-
leger and others study is limited to question-answer pairs provided by a hu-
man tutor. This restriction narrows the scope of interactions for programming
beginners, who state questions beyond the chatbot’s pre-defined knowledge
base. However, LLM-based chatbots, like ours, respond to all queries, offer-
ing users greater flexibility to guide the conversation. Specifically, our study
delves deeper into users’ interactions at a conversational level, where students
make multiple requests. Additionally, we offer initial insights into the dispari-
ties between programming beginners who use a chatbot and those who do not,
a previously unexplored comparison.

3 Experiment Design

In this section, we explain the details of our experiment and data analysis. All
material is available in the project’s repository.

3.1 Research Questions

The objective of this study is to understand how programming beginners use

a chatbot to expand their knowledge, ask questions, or get assistance with
programming tasks. This helps us to understand how the use of chatbots

8 Alina Mailach et al.

At the beginning

of data collection Week 1 Week 2 Week 3 Week 4 Week 5-7

30 min

Control
(N=23)

(N =50)

Tasks 5-7

questionnaire

=
5]
@
=
o
(33
=
g
i
—

Programming experience

3 - \ Feedback for each
' : VRN prompt. ..

Q N :‘,' This answer was helpful
/
,

4 This answer was not helpful

Fig. 2 Study procedure

affects the learning process, and possibly reveals novel interaction styles that
are relevant in industry, be it for on-boarding or developers switching to a new
programming language or framework. In addition, we aim to extract helpful
conversation structures, such that programming beginners can use chatbots
more effectively. To this end, we assess the correctness of task solutions, so
that we can relate the prompts and conversational structure to programming
performance, letting us identify effective patterns of LLM usage. We structure
our study around three key research questions in which we examine the overall
impact of chatbots on task performance, followed by a systematic analysis of
interaction patterns among programming beginners:

RQ;: Can programming beginners better solve programming tasks when us-
ing a chatbot?

RQ>: How do programming beginners interact with a chatbot?

RQjs: How do different interaction patterns relate to programming beginners’
task performance?

3.2 Procedure

We integrated the experiment in a second-semester programming course at our
university, which can be taken by different majors. About 100 students take
the course every year, in which basic data structures, such as linked lists and
trees, are taught. We use Python and Java in this course. The course consists
of a lecture and in-person tutorials, in which students solve tasks with the

Interaction Patterns of Programming Beginners with a Conversational Chatbot 9

help of human tutors to deepen their understanding of the course material.
We collected data in the first seven weeks of the course. There is no compulsory
attendance at our university, which means that students can decide themselves
whether they want to visit lectures and tutorials.

We offer six time slots for in-person tutorials. At the beginning of the
semester, we assigned each time-slot to either the control or experiment con-
dition, then the students enrolled to one of the time slots. We told students
that everyone would use a chatbot during the semester at different times,
but did not tell them whether they would enroll in the experiment or con-
trol group, meaning that they could not make an educated choice, to which
condition they enroll. Our educational system leaves it to students to decide
which of the time slots of the tutorials they visit, meaning, after participating
in task 1, they could still change the time slot and be in a different condition.
However, students only rarely change groups after the first week and no par-
ticipant changed the group during participation, meaning that a participant
was only in one condition. During the first four weeks, students visiting time
slots of the experimental condition had access to a chatbot, while the control
group had no access. From week five, all participants had access to the chat-
bot. Figure 2 shows the experimental procedure, including the experimental
and control group.

At the beginning of the semester, participants were informed about the
goals of the study and how we store and use their data. After we obtained
consent for participation, we collected background information and assessed
participants’ programming experience with an established questionnaire to get
an overview of existing programming skills [31]. The prompt and submission
data has been collected within the in-person tutorials of the course. Partici-
pants in the experimental group received a task description and access to the
chatbot, and had 30 minutes to complete the task and submit their solution.
Specifically, participants were asked to use the chatbot for any question they
encounter during solving a task. We did not provide any further material. For
every answer participants received from the chatbot, we collected fine-granular
assessments on the usefulness of the chatbot (labeled chat conversation in Fig-
ure 2). This included feedback regarding completeness, correctness, or preci-
sion of the chatbot answer, as well as technical issues. The procedure for the
control group was exactly the same, except that the participants were not
given access to the chatbot.

In each tutorial, a human tutor was present and explained and clarified
all remaining questions of the participants after they submitted their solution.
After the the first four weeks, we gave all students of the course access to
the chatbot for the rest of the semester, so that also the control group could
receive this learning experience.

10 Alina Mailach et al.

3.3 Material
3.3.1 Chatbot

To provide participants with access to a state-of-the-art language model and
save their interaction data, including their prompts, the response of the chat-
bot, and the evaluation of the responses, we developed a web application,
consisting of a frontend with a chat interface, and a backend that fetches chat
completions from Open.AI°. We used the LLM GPTS3.5-turbo, which is rec-
ommended for text and code generation because of its lower cost while having
similar performance as other models of the GPT3 family. It is also the model
used for the free version of ChatGPT, a popular vanilla chatbot. At the time
we planned and started our study, this was the most powerful LLM, easily
accessible for chat completions.

3.3.2 Tasks and Task Performance

We used typical programming tasks to deepen participants’ understanding
of taught concepts of the course. Each task concerns a different data struc-
ture and common algorithms, such as adding an element to a double linked
list or determining the height of a tree. We designed the tasks to fit to the
knowledge and skill level of students, who all have completed an introduc-
tory programming course before joining this CS2 course. The course started
with simple data structures, such as arrays and lists, and covered increasingly
more complex data structures, including trees and graphs. As the complexity
of data structures increased during the semester, so did task complexity. We
ensured that a data structure always has been covered in the lecture before
students should implement tasks in the tutorial, such that they have a basic
understanding of the according data structure.

We measure participants’ task performance by the correctness of submit-
ted solutions. In each task, participants should implement a class with specific
methods. We assigned one point for each correct method, that is, when the
implementation was executable and passed our automated tests. If tests failed,
we manually inspected the code. If the failure was due to a naming conflict
(such as the wrong naming of a method or attribute), we still rated the imple-
mentation as correct. If the failure was due to a small mistake (e.g., returning
the entire list instead of the first element), we assigned half a point. In all other
cases, the respective method received zero points. For each task, participants
could receive between 5 and 6 points. Participants’ task performance is then
calculated as a score representing the percentage of points achieved. We cal-
culate average scores of task performance across multiple submitted solutions
using the arithmetic mean. A complete overview is available at the project’s
repository.

5 https://open.ai/

Interaction Patterns of Programming Beginners with a Conversational Chatbot 11

Table 1 Participants self-assessed programming experience by study program compared
to peers, ranging from much worse to much better, and experience with logic program-
ming, ranging from very inexperienced to very experienced. Within each cell, we provide
the color-coded distribution of different answers of participants, alongside the percentage of
participants that leaned towards one end of the scale.

Program N Compared to peers Logic programming
Undergraduate 34 50% [I 9% 47% B | 9%
Graduate 13 7% 8% 31% § 15¢

3.4 Participants

73 students from various majors who usually attend the course in their second
semester participated. Since participation in the study and in-person tuto-
rial is voluntary due to our local study regulation, not all students of the
course participated in the study. At our university, we offer a master’s pro-
gram for students with bachelor’s degrees in the humanities or social sciences,
so the graduate students have similar levels of experience as the undergrad-
uate students, who are CS majors. This is also reflected in the self-assessed
programming experience summarized in Table 1, showing comparable ratings
for graduate and undergraduate participants of our study. We assigned par-
ticipants randomly to the control and experiment group at the beginning of
the study. However, due to local laws and regulations, students are allowed to
switch tutorial groups, meaning that our initial assignment is not the same as
the final control and experiment group. We will provide a discussion on how
this threatens the validity of our insights in Section 6.

3.5 Qualitative Analysis Procedure Outline

We analyzed the data at different levels of granularity, starting with exam-
ining the purpose of individual prompts as the smallest unit of interaction
between the chatbot and the participants. Based on the discovered prompt
purposes, we categorize whole conversations according to the their structure
(i.e., sequences of prompt purposes) and intention (i.e., the overarching goal
of an entire conversation).

As typical for qualitative analysis, a key challenge on all levels of the anal-
ysis is to settle on categories with (a) sufficient support and (b) a crisp topic
(i.e., not too broad). To this end, we adopted an iterative methodology using a
combination of open coding and card sorting. Open coding allowed for the ini-
tial identification and labeling of prompt purposes within the data, while card
sorting was employed to identify intentions across conversational structures.
In the following, we describe this process in detail.

Identifying and assigning prompt-purpose categories To identify different prompt
purposes, we first reviewed all prompts manually. Two authors of the paper ex-
amined half of the prompts each, using open coding. This resulted in a label for

12 Alina Mailach et al.

each individual prompt to capture the purpose of the prompt. In some cases,
a prompt was too short to clearly understand its purpose. In these cases, it
was necessary to review the prompts appearing earlier and later in the conver-
sation for more context. After this initial round of coding, the coders together
reviewed the generated codes and clustered similar codes into prompt-purpose
categories, leading to refined codes.

Next, this prompt-purpose categories were used to review each prompt
again. Whenever the refined category did not fully capture the purpose of the
prompt, the prompt was marked. These cases were further discussed between
the two authors. When they could not reach inter-personal consensus on how
to assign a category to the prompt, they gradually refined the categories.
Finally, one of the authors reviewed all prompts again to ensure that already
categorized prompts still fit into the categories.

Clustering prompts into conversational structures To identify conversational
structures, we group prompts within each conversation into sequences of the
same purpose. For instance, if a programming beginner first used two prompts
with purpose A, followed by one prompt with purpose C, and finally three
prompts of purpose B, the structure of the conversation would be A-C-B.
Finally, we use an open card sorting
approach to find a meaningful clus-
tering of these conversational struc-
tures, called conversation intentions, soncraton | refnement

that is, they represent the underlying comprenen.

goal of the conversation.

Prompt purposes

The goal of one prompt

Exact pattern l Prompt purpose
analysis blocks

Conversational structures

4 ReSUItS Sequence of purpose blocks

. . . S1 S2 S2b S2
Having described our analysis plan, @ ¢
we now dive into the results. To sys- S3 s4 S5 S6
tematically explore our large amount S7a S7b S8a S8b
of qualitative data, we structure <9 510 s11 s12
them on three levels of granular-

S13

ity, as shown in Figure 3. On the
lowest level, we look at individual

- C Card sorting l Sequence similarity
prompts, identifying seven prompt

of purpose blocks

purposes. Next, on a higher granu- Conversation intentions
larity level, we analyze entire conver- Goal of the entire conversation
sational structures by grouping se- Solution generation
quences of prompts with the same e

purpose in a single block (e.g., multi- Y-

ple prompts of code generation form
a single block). A conversational
structure is, thus, composed of mul-
tiple blocks with distinct purposes. We aim to find typical, possibly repeating

Fig. 3 Structure of results analysis.

Interaction Patterns of Programming Beginners with a Conversational Chatbot 13

structures in conversations and align them for RQs with the achieved scores
of corresponding submissions. Finally, on the highest level, we categorize con-
versational structures according to participants’ conversational intention via
card sorting.

We start with a quantitative overview of our results and our conversa-
tion data to put our insights into context. Next, we provide a comparison of
the quality of task solutions of programming beginners with and without a
chatbot. Afterwards, we describe our findings for the different levels of granu-
larity. For each research question, we first provide the results, followed by an
interpretation and discussion for each research question.

4.1 Descriptive Overview

Submission statistics In total, we received 139 submissions, 103 from the ex-
periment and 36 from the control group. Across all submissions, programming
beginners score 45.76 points on average, with a standard deviation of 36.02
points, indicating a large variety. The score of a submission represents the
percentage of correct points for each task (i.e., a score of 100 means that all
points have been awarded for a submission).

Prompts and chat conversations statistics In total, we analyzed 756 prompts in
129 conversations from the experiment group. We started with 50 participants
using the chatbot for the first study task and ended with five for the last
(task 7). This drop-out rate is common for our education system, as there
is no obligation to attend tutorials or lectures, yet we still collect interesting
insights. However, we do not analyze the prompts in a within-subject style
across multiple conversations per participant and rather provide a general
analysis of all individual conversations.

We excluded prompts without a clear goal, for example, when participants
simply greeted, thanked, or insulted the chatbot, leading to the exclusion of
51 prompts. This way, we ensure that we have only genuine prompts in our
data. Furthermore, in 43 cases, participants sent incomplete prompts to the
chatbot, for instance, when pasting code but forget to add a question. The
subsequent prompt often contains the missing question, so we analyze these
successors and exclude the incomplete prompts.

Table 2 gives an overview of the number and length of prompts and con-
versations per task. On average, a conversation consists of 5.8 prompts, each
of which containing 30.6 words.

Helpful and not helpful prompts After each answer of the chatbot, we asked for
feedback on the helpfulness of the answer. In total, participants rated 90.6 %
of the prompt-answer pairs as helpful. Less than 1% of the answers were rated
as non-helpful due to a technical problem. In all other cases, participants rated
the answer of the chatbot as wrong, incomplete, unclear, or incomprehensible.

14 Alina Mailach et al.

Table 2 Number of conversations (#conv) and prompts (#prompt), mean words (W prompt)
per prompt and answer (Wanswer) by task, and standard deviation of words per prompt
(SDprompt) and answer (SDprompt)

Task #CODV #prompt Wprompt SDprompt W answer S Danswer

1 51 325 22.1 42.5 196.8 138.5
2 26 126 45.3 123.2 204.2 161.0
3 18 119 27.1 45.8 335.7 274.0
4 21 113 33.9 67.2 189.4 124.0
5-7 13 73 43.3 109.2 244.2 264.6
all 129 756 30.56 74.2 223.4 189.6

Participants’ programming experience To assess the impact of prior program-
ming experience, we provide self-assessed experience scores in all tables (col-
umn Mxp). Experience scores represent participants’ averaged programming
experience compared to peers, on a scale from 0 (much worse) to 4 (much bet-
ter). A score of 2 indicates perceived equivalence to peers, while higher values
denote higher self-assessed programming experience.

In the experiment group, participants’ experience scores were consistently
similar across the various interaction patterns assessed for both RQ2 and RQs.
Therefore, the experience level has no effect on the interaction patterns of
participants, so we omit a detailed discussion on this aspect for RQs and RQs.

4.2 RQ;: Can programming beginners better solve programming tasks when
using a chatbot?

To answer RQ1, we analyze how the task performance of programming begin-
ners using the conversational chatbot differs from those in the control group.
Table 3 shows the correctness of programming beginners’ submitted solutions
split by task and experimental condition, along with averaged experience val-
ues and the number of submissions. Across all tasks, programming beginners
using the chatbot achieved a mean score of Meore = 47.91, which indicates
an overall better solution quality in the experiment group compared to the
control group, who averaged My.ore = 39.58. This is a 21.0 % higher score of
the chatbot-assisted beginners compared to those without chatbot assistance.
Figure 4 shows the distribution of correctness values in the two groups and
provides a more nuanced picture. Notably, programming beginners who used a
chatbot exhibit the typical bimodal distribution of skills that is often observed
in introductory programming courses [27]. The chatbot might specifically help
some students in creating better solutions, while others solve the task similarly
or worse than those programming beginners in the control group.

Consistent with the general trend, we find that the experiment group
achieves higher scores in the first three tasks. Only within task 4, partici-
pants in the control group considerably outperform those using the chatbot.
Despite better scores, the experience within the experiment group is lower

Interaction Patterns of Programming Beginners with a Conversational Chatbot 15

Table 3 Task performance between participants in the experiment group (“Chatbot”) and
the control group (“Control”). We report the mean score Mscore, mean experience pr
(programming ability compared to peers 0: Much worse; 1: Worse, 2: Equal, 3: Better, 4:
Much better), and number of participants who submitted a solution #. Further, we report
absolute and relative difference M g;¢ between the means of the two groups.

Chatbot Control
Task Mscore # M;p Mscore # M;p Mdiff
1 51.78 45 1.46 37.37 19 1.81 14.41 (38.6%)
2 26.39 24 1.67 10.00 5 1.60 16.39 (163.9%)
3 46.35 16 1.33 40.62 8 1.60 5.73 (14.1%)
4 68.33 18 1.35 85.00 4 2.00 -16.67 (-19.6%)
all 47.91 103 1.43 39.58 36 1.82 8.33 (21.0%)

* Average over 95 (Chatbot) and 29 (Control) submissions with available self-assessment
data.

All tasks Task 1 Task 2
100 4 100 4 100 4
| Chatbot
80 - 80 -1 Control
—— Median
60 - 60 - -=== Mean
80
40 40
20 204
60 | ___________
0 I 0
Task 3 Task 4
100 ~ o 100 1
80 1 80
60 = 60 - [e]
20 A 40 4 40 4
o
204 204
0 0 0

Fig. 4 Distribution of task performance between participants in the experiment group
(“Chatbot”, light red) and the control group (“Control”, gray).

than in the control group for all tasks but task 2. However, the differences in
experiences are small, except for task 4, for which only four individuals submit
a solution in the control group.

Result I: Some programming beginners using the chatbot outperform
those who do not, in three of four tasks. However, for some beginners this is
not the case, and despite having access to the chatbot, they do not genereate
better solutions than programming beginners of the control group.

16 Alina Mailach et al.

4.2.1 Discussion of RGQ

To answer whether programming beginners can better solve programming
tasks when using a chatbot: Yes, our study shows that at least some program-
ming beginners better solve programming tasks with a chatbot. Although we
could not fully randomize the assignment of programming beginners to the
experimental and control group, and despite a tendency for lower experience
values in the experimental group, we find that there is a subgroup of pro-
gramming beginners who perform better when using a chatbot than those
who do not. By contrast, we observe that some students do not benefit in the
same way. One possible explanation is, that students who successfully use the
chatbot simply copy and paste code. However, if that was the case, we could
expect a higher solution quality, especially since LLMs are capable of solving
CS2 tasks [9]. Another interpretation is that the chatbot’s interactive and per-
sonalized learning approach complements existing programming skills of some
beginners and potentially compensates for their initial lower experience levels.
This might be due to a more engaging and responsive environment, allowing
beginners to receive immediate feedback and explanations compared to the use
of traditional learning methods (e.g, textbooks, web pages, or human tutors).
The bimodal distribution in the group of chatbot users’ might also be a sign
of negative effects of frustration and self-doubt that might occur in program-
ming beginners [5]. One explanation for our results is that the negative effects
of chatbots affect some programming beginners more than others, leading to
lower solution quality.

It is also noteworthy that programming beginners of the control group
outperform those using the chatbot in the fourth task. However, since the
number of participants is rather low for this specific case (only 4), and these
participants have a higher average programming experience, we rather assume
that only skilled participants of the control group kept on going with the
course and submitted solutions, and this might be the major reason for the
higher performance (not the usage of a chatbot). This observation leads to
an interesting outlook worth further investigations: Chatbots might lower the
barrier for low-skilled participants to submit solutions and actively take part
in a course. So, chatbots might be a tool to increase engagement. However,
future studies are needed to evaluate this interpretation.

As a final note, one must not confuse task performance with learning suc-
cess. We cannot state that more accurate submissions of the chatbot group
also lead to a higher learning success, since the 30-minute session had the focus
of solving programming tasks. aMeasuring learning success should entail dif-
ferent measures, such as exams. Local regulations do not allow for a mandated
participation in tutorials. To measure learning success, controlled longitudinal
studies in which programming beginners are more free to use chatbots outside
of an restricted environment as in our study, could be useful. However, in
an educational setting (such as a university courses) such studies have severe
ethical implications, as long as we cannot be sure whether using the chatbot

Interaction Patterns of Programming Beginners with a Conversational Chatbot 17

Basic prog. knowledge
(101 prompts, 13.4%)

Bug identification

(42 prompts, 5.6%)
Code comprehension
(32 prompts, 4.2%)
Code generation

(380 prompts, 50.3%)
Code refinement

(52 prompts, 6.9%)
Concept comprehension
(19 prompts, 2.5%)

Testing
(32 prompts, 4.2%)

5-7 |
|

Task
(98]
_| - I - l —

0.0 02 0.4 0.6 0.8
Relative frequency

0

Fig. 5 Distribution of prompt purposes by task

does more harm than good. Our study is an important piece of the puzzle to
dispel such concerns and enable such controlled longitudinal studies.

To answer RQ;, we found that the usage of a vanilla chatbot helps some
programming beginners to deliver better solutions for given tasks. This un-
derpins the potential chatbots hold for educational and industrial purposes,
in effectively aiding programming beginners to producing more correct so-
lutions.

4.3 RQ2: How Do Programming Beginners Interact with a Chatbot?

To address RQ2, we present results at various granularity levels, beginning
with the purposes of individual prompts and extending to the overarching
intentions of entire conversations.

4.8.1 Prompt Purposes

Analyzing the individual prompts used by programming beginners in the ex-
perimental group resulted in seven prompt purposes, each of which occur
in multiple conversations. We give an overview of all purpose categories of
prompts and example prompts in Figure 1. We show the relative distribution
of purposes per task in Figure 5. The major purpose category is code genera-
tion across all tasks, followed by the request of basic programming knowledge.
Next, we explain each purpose in detail and provide example prompts to il-
lustrate our findings. For each prompt, we include a number in brackets that
uniquely identifies the prompt within the published dataset.

18 Alina Mailach et al.

For half of all prompts, the primary purpose is to receive
generated code. Thus, the focus lies on implementing a particular task rather
than understanding the underlying concept, which counts for all tasks, even
though for Tasks 2 and 4, this is a bit less pronounced. Task 2 shows the
smallest fraction and is centered on object-orientated concepts, such as class
structures, where participants are provided with pre-defined classes distributed
across different files to integrate their solutions. In the context of our study,
one possible explanation is that the necessity to harmonize the generated code
with existing source files renders straightforward code generation prompts less
effective compared to tasks in which participants work with fewer or no addi-
tional source files.

In typical code generation prompts, participants asked the chatbot to “ Cre-
ate a class for me where accounts with people can be created” (499), “ Write
me a Java code thatl reverses a list and returns it.” (9), “ Write a Python code
Jor the following task [pasted given task]” (200), or “find duplicate” (289). Par-
ticipants frequently copy and paste the given tasks directly into the chatbot,
as seen in prompt 200. Alternatively, some participants opt to rephrase the
task in their own words, like in prompts 9 and 499. While there are instances
of precise task summarizations, more often, participants’ prompts lack essen-
tial implementation details, with some reducing the task to just keywords or
method names, a trend highlighted by prompt 289, in which the task was
to implement a method to find a duplicate in a given array and return it.
Consequently, the chatbot’s responses are often solely based on incomplete or
inaccurate information. This indicates that programming beginners are not
aware of what information a chatbot requires to effectively solve a task. This
is an interesting result, as it points to a mental gap of what chatbots can
technically do and what they are expected to do.

Beyond simple requests for code generation, 52 prompts
asked to refine existing code. With these prompts, the programming begin-
ner requested help in improving efficiency, readability, or overall quality or
functionality of their code (either provided or generated in a prior prompt).
These inquiries aim at optimizing the code implementation to enhance its
maintainability and performance. For instance, a participant asked to change
the implementation of an existing method, such that “ The inversion still seems
complicated to me, can it be simplified?” (731). Notably, there is an increase
in code refinement prompts in tasks where code generation prompts are less
frequent, particularly in tasks 2 and 4. This pattern may reflect a lower sat-
isfaction with the initially generated code. A potential cause for this pattern
might be that programming beginners refine their code, because they struggle
with integrating their solution within a more complex environment of pre-
existing classes, as observed in Task 2.

Result II: In the majority of prompts (50.7 %), programming beginners
request the generation of code to solve a given task, but partially lack under-
standing of what information the LLM needs to solve the task. Refinement

Interaction Patterns of Programming Beginners with a Conversational Chatbot 19

of existing code by prompting for specific changes and adjustments is only
of limited use (6.9 %).

In 32 cases, prompts contain a question to explain specific
lines or sections of a given piece of code. These inquiries aim at gaining a deeper
understanding of how certain code segments function or how they contribute to
the overall program. For instance, a participant asked for an explanation of the
code in simple language: “Interpret the following code and explain it in simple
language” (710). While this participant asked for a general explanation, some
programming beginners had very detailed clarification requests, such as “what
does this part do: if current_node.next: current_node.next.prev= new_node”
(600) or “what does this @override do with this code from the class double linked
list” (493). We find that the frequency of programming beginners asking for
explanations of code increases with more advanced tasks. One interpretation
for this pattern is that, as tasks become more sophisticated, programming
beginners are increasingly seeking clarity on code implementation.

Concept comprehension In 19 prompts, participants asked for assistance in
understanding a certain concept independent of a specific implementation.
Hence, this purpose category focuses on gaining a deeper understanding about
basic concepts rather than specific code details. For instance, one participant
asked broadly “ What is a double linked list[?]” (519), and another participant
wanted to know “ What is a queue in programming/?]” (640). Participants in
our study prompted for explanations of concepts across all tasks with the ex-
ception of the first task and with high occurrences in task 2, 3, and 4. This
trend could suggest that participants faced greater challenges with advanced
data structures, such as Linked Lists and Queues, introduced in later tasks of
the course, while requiring less assistance with conceptualizing simpler struc-
tures, such as Arrays, which had been the focus of Task 1. However, this is an
interpretation and we need further research to evaluate whether it holds.

Basic programming knowledge In 101 prompts, programming beginners re-
quested information on basic programming knowledge, including syntax, rules,
or specific features of the programming language. For example, participants
asked “How do I use modulo in Python?” (126), “ What arguments does .pop()
have [in] Python[?]” (512), and “How to get [the] length of list in Python[?]”
(75). Most of these prompts relate to questions that belong to a beginner’s cod-
ing tutorial or looking up functionalities in the API documentation. In some
cases, participants’ prompts demonstrate a need for assistance with transfer-
ring concepts across languages. For instance, in this prompt a participant is
inquiring about initializing a fixed-size list in Python, akin to an array decla-
ration in other languages: “ Empty list with 5 entries in Python?” (150).

Result ITI: The second largest number of prompts regarding programming
knowledge (13.4 %) indicates a considerable use case beyond code genera-

20 Alina Mailach et al.

tion: LLMs might replace API look-ups and ease transfer learning of new
programming languages.

Bug identification In 42 prompts, participants encountered issues in their code
and required assistance in resolving them. They either provided a piece of their
own code or refer to previously generated code. Often, participants provided
error messages with an explanation request, for example: “ Why did I get these
error messages: [copy-paste of error messages/” (307). In addition, participants
have passed code to the chatbot and asked “/pasted code] What is not working
here[?]” (630).

Testing In 32 prompts, the purpose was related to testing, specifically, search-
ing for guidance on how to conduct tests or verify the correctness of code, which
included self-written or generated code. These inquiries focus on ensuring the
functionality and reliability of code. Prompts usually contain a request for
help with testing code: “ Give me another function so that I can test the code”
(193) or “ Write a test case for the complete code” (133). In three conversations,
we find that programming beginners ask the model to test the code for them
directly or checking for compliance with the task description: “Can you test
those methods for me?” (508) or “This [code] works with this task, doesn’t it?
[copy paste of the task description]” (734).

Result IV: Programming beginners use the chatbot to assure code qual-
ity by requesting help to find bugs or test code (9.8%). Explaining error
messages seems to be a key usage scenario of chatbots.

4.8.2 Conversational Structures and Intentions

Having analyzed the prompt level, we now look at conversation structures,
that is, sequences of prompts.

In total, we found 13 distinct conversational structures, that is, sequences
of purpose blocks. We give an overview in Table 4, sorted according to their
respective intention, structure complexity, and number of conversations in
which they appear. Each structure has a unique identifier by which we will
refer to it. In some cases (e.g., S2, S7), structures start with the same purpose,
but continue with slight variations, such as different combinations of purpose
blocks. Notably, 85 conversations (71.4 %) show simple structures, consisting
of one or two distinct prompt purposes. Only 34 conversations (28.5 %) show
more complex structures, in which prompts had more than two distinct pur-
poses. These complex structures (S3, S9, S13) contain the same purpose, but
with variations in their order.

With open-card sorting (cf. Section 3), we categorized the conversational
structures further according to their overarching intention (left column of Ta-
ble 4), that is, generating a solution, tutoring, or a combination thereof. These
intentions describe meaningful usage scenarios for programming beginners and
represent the highest granularity level of our analysis. Furthermore, Figure 1

Interaction Patterns of Programming Beginners with a Conversational Chatbot

21

Table 4 Conversational structures and corresponding task performance grouped by the
two conversational intentions (solution generation and tutoring). We report the mean score

Mscore (colored according to its rank), mean experience H;p (programming ability com-
pared to classmates 0: Much worse; 1: Worse, 2: Equal, 3: Better), and number of conversa-
tions #conv. Dashed boxes represent sets of conversational structures with varying order of

prompt purposes.

Conversational Structure Fconv FHsub pr Mscore
777777777777777777777777777777 54 46 1.52 53.26
§ st Code 28 22 1.17 44.24
4 generation
<
3 S2 a Code | Code 15 13 1.85 45.51
qs::) generation refinement
a0
Cod)
g b gene(:*a?ion 3 3 1
8 generation S AaiaterNate) ¥
Code i Code [P Code NI Bug | :
S3 gene(;a:ion I reﬁn:r:ent —m gene(:‘aiion : 7 7 2
23 19 1.06 35.79
S4 Basic prog. 10 9 1.13 21.67
knowledge
comprehen.
B
o S6 3 2 1 447
R - proo: 2 2 1 40.00
*S knowledge
&= b Code 2 1 1 3000
knowledge comprehen.
EERRY osicrres. B Testing 1 1 0 | 6667
Lo
S9 T Code | prog. . Bug g N E— o 2 1 33.00
(et | comprehen. knowledge i ificati knowledge
777777777777777777777777777777 42 37 1.6 48.71
S10 Basic prog. Code 10 9 2.13 35.74
knowledge generation
o]
g s11 Code __ Code __ Code 5 4 1.5 | 65.83
g generation comprehen. generation
S12 Concept Code 2 2 25 56.67
comprehen. generation comprehen.
S13 - M code [Gode m ————————————— Code : 25 22 1.33 47.12
j knowledge generation refinement comprehen. |
119 102 1.47 46.89

* Average over 95 submissions with available self-assessment data.

22 Alina Mailach et al.

shows how individual prompt purposes are associated with different conver-
sation intentions. About two thirds of conversations can be unambiguously
assigned to one of two conversational intentions, that is, solution generation
or tutoring. The remaining conversations show signs of both intentions (mized)
and we categorize them accordingly as mizred. We discuss the conversational
structures along these intentions next.

Conwversation intention: Solution generation Conversation structures with the
intention of solution generation primarily contain prompts for code generation,
making up an entire conversational structure in 51.85 % (28/54) of the cases.
In other words, there are sequences of prompts that generate code (S1), but do
not build on each other (i.e., do not refine existing code) or ask for subsequent
development activities, such as testing or debugging. Although the prompts
might target different parts of the same task, each prompt generates a new,
distinct piece of code. By contrast, in conversations that follow structure S2a, a
piece of code is iteratively refined. In many conversations, this pair of purpose
blocks (i.e., generation and refinement) is used repeatedly, so code is generated
and refined in multiple steps.

Structures S2b and S2c also consist of two purposes, and several conversa-
tions contain more than two purposes (S3). They hint at more sophisticated
solution-generation structures, such that code generation (and refinement) is
followed by prompts concerning the correctness of code. This more advanced
use of chatbots potentially leads to higher code quality, and shows that pro-
gramming beginners actively engaged with both, the generated solutions and
the correctness of code.

Result V: With 45.38 %, solution generation is the most prevalent con-
versation intention. Notably, in most of the conversations, programming
beginners are generating code without any other engagement with the chat-
bot. Only 20.37 % of conversations that target code generation ask for help
with debugging or testing the generated code.

Conversation intention: Tutoring Several conversations exhibit the intention
to learn, but without requesting code generation. The conversations exhibit an
educational and exploratory character, similar to the interactions between a
student and a tutor. Some of the prompts used for tutoring can be associated
with the generation of a solution, such as the prompt for one-line if-clauses
in Figure 1. However, the primary distinction is that tutoring prompts aim
to assist students in practicing coding on their own independent of the given
task, whereas solution generation prompts indicate a request for the chatbot
to directly produce the solution.

Again, we found that conversations containing repetitions of the same
prompt purposes make up the majority of conversations (65.23 %; 15/23).
Programming beginners ask for basic programming knowledge (S4), code ex-
planations (S5), or help in identifying bugs (S6). By contrast, structure S7
represents a conversation that starts with requesting basic knowledge and is

Interaction Patterns of Programming Beginners with a Conversational Chatbot 23

followed by subsequent prompts for understanding (lines of) code or identify-
ing bugs. So for such structures, programming beginners first search for the
knowledge they need to solve a task on their own, and then further request
help when they encounter errors (S7a) or ask for explanations of code they
do not fully understand (S7b). Furthermore, we found that requests for help
with testing occur with requests for basic programming knowledge (S8a) and
explanations of code (S8b).

Result VI: In 19.33% of the conversations, programming beginners use
the chatbot as a coding tutor, assisting in the creation of a solution, helping
with general knowledge, debugging, or testing.

Mixed conversational intentions In about one third of the conversations, par-
ticipants used the chatbot for both, as tutor for learning and for generating a
solution. In simple conversations, programming beginners request basic pro-
gramming knowledge and the generation of code (S10) within the same con-
versation (23.81 %; 10/42) or generate code before asking for explanations of
code (S11), or ask for explanation of concepts before generating code (S12).

Most of the conversations have an advanced structure, containing different
purposes to provide basic knowledge, generate, refine, and test code, indicating
an advanced process to understand concepts and generate solutions.

Result VII: 35.29 % of the conversations show mixed intentions, in which
programming beginners use the chatbot to generate code for solving a task,
but also request explanations and knowledge in a tutoring style.

4.8.8 Discussion of RQo

We identified a large variety of usage and communication patterns, despite the
homogeneous group of participants and the focused programming tasks.

Our study was designed to submit code solutions to programming tasks,
which represents an ideal case to use the chatbot for code generation. As such
tasks are common in CS education, other investigations raised concerns about
the viability of current typical programming tasks for CS students in the pres-
ence of chatbots [7,9]. Our observations might weaken such concerns: We found
that almost a fifth of participants used the chatbot solely for tutoring without
prompting for a solution. Since the solutions were ungraded, students may feel
more comfortable in such a setting for using a chatbot for other, educational
use cases. S0, educators might provide chatbots especially for voluntary tasks.

While we find some interesting insights in the distribution of specific prompt
purposes over time, such as more requests for code explanations in more so-
phisticated tasks or less code generation in tasks targeting object oriented
programming, we must be careful with over-interpreting them. It is possible
that these observations are due to the specific challenges of the tasks or ef-
fects over time, such as participants becoming more skilled in different areas.
Nevertheless, these insights are potential starting points for future research

24 Alina Mailach et al.

endeavors, in which programming beginners are more closely accompanied in
longitudinal within-subject studies.

Furthermore, the results indicate that programming beginners often ne-
glect or are unaware of prompt engineering best practices, such as chain-of-
thought [34] or few-shot prompting [4]. Moreover, we identify several interac-
tions that show a lack of understanding of how LLMs work, such as prompt-
ing the chatbot to generate code without providing a clear description of the
functionality that should be implemented. This gap in knowledge can result
in inadequate context provisioning and an increased risk of reliance on in-
correct or subpar responses, a previously identified concern when using Al
assistants [24]. To effectively integrate chatbots in environments with pro-
gramming beginners, whether in education or industry, it is, thus, essential to
ensure that these beginners clearly comprehend the information required by
the chatbot and how they work. Teaching prompt engineering therefore might
be a practicable way to help beginners getting started with using chatbots
for code generation more effectively. This can be interesting in industrial set-
tings, in which beginners and career changers have to get up to speed quickly,
but requires field studies to evaluate its effectiveness. The absence of suitable
prompts to generate code might not only be an indicator for missing skills
on how to use a chatbot, but could more generally indicate a lack of prob-
lem solving skills. While this is an interesting direction for future studies, we
believe that teaching problem solving skills and prompt engineering simul-
taneously might be a promising direction, as generating a good prompt by
explaining how a problem was solved before, dissecting it into chunks that are
more easy to solve, or eliciting reasoning, can be very similar to understanding
the problem itself.

In summary, our results show the clear emergence of specific prompt pur-
poses, which are highly relevant for designing future user studies in an industry
and educational context. Our study provides a vital step for researchers to de-
sign studies in the future that take the found insights, purposes, and structures
into account.

To answer RQ2, we found diverse prompts and conversation structures, as
well as different intentions of conversations. This diversity is surprising,
considering the focused tasks. The identified purposes and intentions can
guide future research on chatbot design to develop tailored chatbots for
programming beginners. In addition, our results underscore the necessity for
programming beginners to understand the fundamental workings of LLMs
and best practices of prompt engineering for effective chatbot use.

4.4 RQs: How Do Different Interaction Patterns Relate to Programming
Beginners’ Task Performance?

Having identified typical interaction patterns on different levels of granularity,
we now investigate how they relate to participants’ performance in the given

Interaction Patterns of Programming Beginners with a Conversational Chatbot 25

Basic prog. knowledge Bug identification Code comprehension Code generation
100 —‘— 100 —‘— —‘— 100 q —‘— 100
80 4 80 A 80 1 80 A
60 4 60 - 601 60 -
40 40 4 40 4 40 -
20 A 20 20 20
0 —T— 0 J— 0 J— 0
Code refinement Concept comprehension Testing

100 —1— 100 - — 100 - 1
--- Mean
T T — Median
80 80 1 80 A

Without Purpose

604 ——— 60 60 1
With Purpose

40 4 40 - 40 -
20 4 201 201

| | o |5
0 0 0

Fig. 6 Distribution of task performance between participants who use a prompt purpose
(“With”, colored) and those who do not (“Without”, gray)

tasks, so we can answer RQjs. First, we divide participants by prompt purposes
and compare their performance to discern trends. Then, we investigate how
different conversational structures and intentions are associated with higher
or lower task performance of participants.

4.4.1 Task Performance by Prompt Purpose

Table 5 depicts participants’ task performance split by prompt purposes and
task. To this end, we split participants’ submitted solutions into two parts:
Solutions of those who used a prompt with the specific purpose in their con-
versation with the chatbot (column With purpose), and solutions of those
who did not (column Without purpose). In 38 conversations with the chatbot
(column #), participants used at least one prompt with the purpose basic
programming knowledge. These participants score, on average, 36.36 (column
M ycore). Conversely, in 65 conversations, participants did not use prompts
querying basic programming knowledge and achieve an average score of 54.67.
This represents a difference of -18.31 (-33.5 %) between the two groups, and
means that participants who did not ask for basic programming knowledge per-
form substantially better than participants who did ask for basic programming

26 Alina Mailach et al.

Table 5 Prompt purposes and corresponding task performance. We report the mean score
Mscore and absolute and relative difference Hdiﬁ‘ from the mean score of all submissions.
Further, we report mean experience H;p (programming ability compared to peers 0: Much
worse; 1: Worse, 2: Equal, 3: Better, 4: Much better) and number of participants who
submitted a solution #.

With purpose Without purpose

Purpose Task Hscore # Mip Mscore # H;p Mdiﬂ

o 1 4211 19 141 5885 26 150 -16.74 (-28.4%)

%Ego 2 19.44 12 1.40 3333 12 1.91 -13.89 (-41.7%)

2*%’ 3 52.78 3 1.33 44.87 13 1.33 7.91 (17.6%)

78 4 4750 4 1.25 7429 14 138 -26.79 (-36.1%)
N <

= all 36.36 38 1.35 54.67 65 1.52 -18.31 (-33.5%)

= 1 51.25 8 1.43 51.89 37 1.47 -0.64 (-1.2%)

g 2 2500 6 1.80 26.85 18 1.62 -1.85 (-6.9%)

£ 3 7000 5 140 3561 11 1.30 34.39 (96.6%)

M g 4 82.00 5 1.40 63.08 13 1.33 18.92 (30.0%)
g

= all 55.00 24 1.53 45.76 79 1.41 9.24 (20.2%)

1 48.57 7 1.14 52.37 38 1.53 -3.8 (-7.3%)

2 54.17 2 2.00 23.86 22 1.63 30.3 (127.0%)

3 72.22 3 1.00 40.38 13 1.42 31.84 (78.8%)

4 57.14 7 1.17 75.45 11 1.45 -18.31 (-24.3%)

all 56.05 19 1.24 46.07 84 1.49 9.98 (21.7%)

1 53.85 39 1.54 38.33 6 1.00 15.51 (40.5%)

2 28.33 15 2.00 23.15 9 1.00 5.19 (22.4%)

3 46.43 14 1.31 45.83 2 1.50 0.6 (1.3%)

4 67.33 15 1.40 73.33 3 1.00 -6.0 (-8.2%)

all 50.42 83 1.50 37.50 20 1.07 12.92 (34.5%)

1 72.73 11 1.70 45.00 34 1.39 27.73 (61.6%)

2 25.00 5 2.00 26.75 19 1.56 -1.75 (-6.5%)

3 25.00 4 1.75 53.47 12 1.18 -28.47 (-53.2%)

4 62.86 7 1.71 71.82 11 1.10 -8.96 (-12.5%)

all 54.26 27 1.72 45.66 76 1.41 8.6 (18.8%)

8 1 10.00 1 1.00 52.73 44 1.48 -42.73 (-81.0%)

2 g 2 13.89 3 2.00 28.17 21 1.61 -14.29 (-50.7%)

8 E 3 61.11 3 1.33 42.95 13 1.33 18.16 (42.3%)

S 5 4 4000 4 150 7643 14 131 -36.43 (-47.7%)

é all 3591 11 1.50 49.35 92 1.44 -13.44 (-27.2%)

1 88.33 6 1.33 46.15 39 1.49 42.18 (91.4%)

60 2 55.56 6 1.67 16.67 18 1.67 38.89 (233.3%)

:;: 3 100.00 2 2.00 38.69 14 1.23 61.31 (158.5%)

g 4 64.00 5 1.60 70.00 13 1.25 -6.0 (-8.6%)

all 72.81 19 1.50 42.28 84 1.46 30.53 (72.2%)

* Average over 95 submissions with available self-assessment data.

Interaction Patterns of Programming Beginners with a Conversational Chatbot 27

knowledge. We provide the distribution of the performance values by prompt
purpose in Figure 6. In line with the averaged value, we observe that the dis-
tribution of performance values associated with basic programming knowledge
is skewed, with most values accumulating at the lower end of the performance
scale. This is an interesting and possibly highly impactful result: Essentially,
it indicates that students who query for basic knowledge are unfit for solving
the task such that these types of prompt purposes might act as early warning
signals for individual students and supervisors alike. In the following, we focus
on the most interesting observations and refrain from describing each prompt
purpose in detail, as this might be repetitive and not much to learn from. Note
that the number of participants who use a prompt with a specific purpose and
those who do not, often considerably differs, so we must not over-interpret any
results.

Overall, we observe for five of the seven prompt purposes higher average
performance when used, compared to when not. This difference is most pro-
nounced for participants who use a prompt for testing (~72%), followed by
prompts for (~35%), (~21%), bug iden-
tification (~20 %), and (~19%). Notably, these purposes focus
on the code to solve a given problem, including a deeper investigation into
code artifacts with the goal of either understanding or improving the code.

The two prompt purposes that are associated with low performance are
concept comprehension and basic programming knowledge, yielding, on av-
erage, a 35.91 %/33.5 % lower score than the overall average of all scores. An
immediate conclusion would be that participants simply did not generate code.
However, when looking closer at the corresponding conversations that contain
also prompts to generate code, this conclusion only partly holds, because par-
ticipants who additionally generate code, still perform worse than those who
do not use such prompts at all. We will discuss this aspect in more detail
considering mixed intentions in the next section.

Result VIII: Participants who use the chatbot to generate or work with
existing code achieve substantially higher correctness scores compared to
requests for basic knowledge and concept comprehension, indicating a lack
of knowledge that cannot be filled by the chatbot and, simultaneously,
providing a potential signal to supervisors that more education is needed
for the corresponding topics.

4.4.2 Task Performance by Conversational Intentions

Next to structures and intentions of conversations, Table 4 depicts partic-
ipants performance in the corresponding task (column More). Overall, we
found that programming beginners intending to generate a solution perform
best with an average score of 53.26, followed by mixed intention conversa-
tions (48.71, on average, cf. Table 4). Interestingly, programming beginners
who used the chatbot solely as a tutor perform worst with an average score
of 35.79, indicating that a too large gap in knowledge might not be overcome

28 Alina Mailach et al.

with a chatbot. We will discuss the most interesting observations per intention
next.

Solution generation From all solution-generation structures, conversations can
be broadly divided into two groups according to their score. In the low-score
group (score below 50), participants’ conversations consist only of code genera-
tion (S1) or additional refinement requests (S2a). By contrast, in the high-score
group (score above 80), programming beginners not only request to generate
a solution, but further request testing or debugging it (S2b, S2¢, S3). This
is a more nuanced perspective on the prior findings on individual prompt
purposes: Although all participants’ use the chatbot as a tool to generate a
solution, those who additionally use the chatbot for code investigation activi-
ties (i.e., debugging or testing) perform particularly well. Notably, in the lower
scoring group, there is virtually no difference between participants that simply
generate code (S1) and those who iteratively refine it (S2a).

Tutoring Submissions related to tutoring as primary intention for conversa-
tions yield a wider range of scores. Three structures (S5, S8a, S8b) are asso-
ciated with higher task performance (above 65, 72.50, on average), whereas
five other structures (S4, S6, S7a, S7b, S9) are associated with low task per-
formance (below 45, 28.71, on average). Especially those programming be-
ginners whose conversations contain only code comprehension requests (S5)
perform particularly well (70, on average), whereas participants whose con-
versations contain only requests for basic knowledge (S4) perform particularly
poor (21.67, on average). While these scores related to particular structures
confirm findings on the prompt purpose level Table 5, they are more pro-
nounced: Especially, we find a stark difference between concept comprehension
and code comprehension. While code comprehension seems to align with good
performance, concept comprehension does the opposite. So, a chatbot might
be beneficial only for certain activities.

Mixed scenario The scores of participants who have mixed intentions shed
further light on the performance when prompt purposes are used that are
generally associated with lower scores (basic programming knowledge, con-
cept comprehension) and higher scores (code generation, code refinement, code
comprehension, and testing). Specifically, the task performance of 9 partici-
pants who generate code after requesting basic programming knowledge (S10)
is virtually the same as the performance of participants who do not gener-
ate code at all (i.e., with tutoring intentions). Again, this means, especially
requests for basic programming knowledge indicate struggles of programming
beginners, independent of whether they use the chatbot to generate code or
not. Conversely, if participants do not request basic programming knowledge
(S11, S12), scores are considerably higher and comparable to those of par-
ticipants whose only intention is to use the chatbot as a tool for solution
generation. In summary, programming beginners with mixed intentions can
perform similarly well as those whose only intention is to use the chatbot for

Interaction Patterns of Programming Beginners with a Conversational Chatbot 29

solution generation. Requests for basic programming knowledge is a strong in-
dicator for struggling beginners and might serve as a warning sign to provide
further guidance.

Result IX: Conversations containing validation and testing are associated
with substantially better performance of programming beginners. Conver-
sations that include basic programming knowledge not only signal miss-
ing knowledge, but the lower performance of these programming beginners
might also indicate unsuccessful tutoring of the chatbot.

4.4.8 Discussion of RQs

Although our study design is mainly focused on how programming beginners
interact with chatbots rather than how this interaction influences performance,
we can, with over 100 submissions, draw initial insights on promising interac-
tions and potential pitfalls, thus answering RQg.

In essence, our findings indicate that programming beginners who use the
chatbot for in-depth examination of code and identification of errors show im-
proved performance compared to those who do not. This is in line with prior
work that has shown that LLM-generated summarization of code are seen as
more helpful by students than those created by peers [15]. Furthermore, the
better performance of programming beginners utilizing the chatbot to under-
stand long stack traces and error messages aligns with insights from research
targeting the comprehensibility of compiler error messages, which showed that
enhanced error messages with explanations in natural language, help program-
ming beginners to reduce the overall number of errors they make [2]. Similarly,
the effectiveness of testing in conversations confirm prior research that identi-
fied the importance of programming beginners validating a chatbot’s responses
with their own knowledge [23].

Additionally, the conversations and scores suggest that either the tutoring
aspect is not helpful (e.g., because understanding the answers might require
further knowledge), not personalized (e.g., because the transfer of the concept
explanation to the task at hand is not presented in the answer), or, generally,
the chat flow is not the appropriate medium for programming beginners. Al-
though this insight needs to be further evaluated, it nevertheless points to a
limited success of tutoring capabilities for vanilla chatbots, which, however,
are currently the possibly largest LLM-tool in practice. This observation is
also relevant for industry, as for on-boarding activities or learning new tech-
nologies, solely relying on vanilla chatbots may be counter-productive.

While we find these clear associations between task performance and dif-
ferent prompt patterns, our study is not designed to examine the root cause,
which means that different interpretations are valid and have to be considered
and evaluated in future research. One possible reason for different performance
may stem from the limited time programming beginners were given to solve
the task. Clearly, 30 minutes are insufficient to compensate for a lack of un-

30 Alina Mailach et al.

derstanding in basic programming concepts and data structures, even when
using a chatbot.

Another explanation could target different learning styles: Some students
might be oriented more toward learning through understanding concepts and
focusing less on generating code, which might also lead to less code or code
of lower quality within the 30 minutes sessions. While the cause of diminished
performance for tutoring requests remains unclear, our results can be used
for developing novel detection mechanisms to assess the purpose of prompts
and signaling a lack in understanding when basic programming concepts are
asked. Such an early identification of struggling programming beginners could
potentially decrease drop-out rates and point companies to employees with a
need for further training.

To answer RQj3, code investigation activities are associated with higher task
performance, signaling a relevance of such prompts and conversation struc-
tures for high code quality. Low performance is associated with prompts
with the purpose of learning basic concepts of programming and language
specifics. Although we can not clearly identify the root causes for this
finding, the identified prompt purposes might serve as markers to iden-
tify struggling beginners. Therefore, building early warning systems might
be a valuable avenue for education and practice. However, based on our
results novel theories for conversational structures and their relationship
with code quality, productivity, and early detection of a lack of program-
ming knowledge can be developed.

5 Implications

From our results, we derive five major implications for both, practice and
education, which we discuss next.

In general: Chatbots alone are insufficient When looking at our study, we
make one interesting observation: We have rarely encountered accurate (or
even close to accurate) submissions when using the chatbot. This is surprising,
because the tasks are basic programming tasks that the LLM has clearly seen
during training and successfully solved over and over again in the wild.

So, despite that our programming beginners have been taught the program-
ming concepts directly before working on the tasks and are supposed to solve
them on their own, they could not effectively use a chatbot that is capable of
given the full, correct solution. Again, why do we not see perfect results across
all the tasks? We conjecture that it takes an educated user (at least for now)
to get an LLM to provide a full, correct solution for a programming task. This
implies that we should not treat chatbots as stand-alone problem solvers for
unskilled users, but need to educate in tandem proper CS knowledge to users
to make effective use out of this new technology.

Interaction Patterns of Programming Beginners with a Conversational Chatbot 31

In general: Need for prompt engineering Crafting a prompt, such that the
user receives a satisfactory answer, is not easy. It is not surprising that a
number of sources teach prompt engineering®. Despite practical tips, such as
proper formatting and chain-of-thought, we observed that the required context
and capabilities of chatbots seem unclear to our participants. Thus, prior to
any chatbot activity, we strongly suggest that practitioners and students alike
should receive basic training of LLM mechanics and prompting.

For industry: Need for on-boarding support We found that using chatbots
can result in better, more accurate solutions. This is interesting for onboard-
ing inexperience developers or career changers. This way, they can become
more productive while acquainting the necessary developer skills. So when en-
tering a new programmer position, we suggest using chatbots in addition to
existing measures for introduction tasks. However, this should always be ac-
companied with monitoring metrics to avoid negative effects chatbots might
have on programming beginners.

For industry: Need for conversation guidelines We found evidence that par-
ticular conversation structures are related to higher code quality of submis-
sions. Although we studied only programming beginners in education, it is
likely that such a relationship exists in a practical setting and might be true
for experienced developers, too. Specifically, developers should always prompt
toward the generation of test functions, not just code alone. We suggest the in-
troduction of guidelines or conventions in companies that incorporate chatbot-
generated source code by adding a quality insurance step after a code gener-
ation prompt.

For education: Monitoring of student skills The relationship of distinct
prompts and conversations with varying submission scores points to a promis-
ing new tool for monitoring student skills. We found possible indicators for
when students struggle with given tasks that they are supposed to solve given
the current progress of the lecture. This way, targeted, tailor-made teaching
activities can be provided to these students and educators may be better in-
formed about the current state even if students are reluctant to communicate
their struggles.

6 Threats to Validity
6.1 Internal Validity
Drop-out rate and potential self-selection of participants to the experiment

and control group might threaten internal validity. Both, dropout and self-
selection, are due to regulatory restrictions of our educational system, such

6 https://www.promptingguide.ai/ or https://www.deeplearning.ai/short-courses/
chatgpt-prompt-engineering-for-developers/

32 Alina Mailach et al.

that students are free to choose which on-site tutorial (i.e., experiment vs. con-
trol group) they visit and whether they want to visit any tutorial at all. How-
ever, when students chose their tutorial group, they were not aware whether
they would be in the control or the experiment group, such that they could
not make an educated choice.

We observe that students usually chose one time slot at the beginning of
the semester that fits their timetable and do not change afterwards. Addition-
ally, to avoid systematic overlaps with other courses of students that could
introduce bias, multiple time slots have been offered for both, the experiment
and control condition, to further mitigate this threat. Also, our data shows
that there was no movement of students between groups after the first ses-
sion: No participant was part of the experiment group at the beginning and
changed to the control group (or vice versa) while the study was running. This
indicates that students did not decide intentionally to visit a different tuto-
rial after knowing they were part of the experiment or control group, making
self-selection a considerably lower threat than it appears initially. However,
as with every study, dropout means that the participants who continue with
the study might exhibit different properties than those who abort. In our case,
motivated students or students who need assistance during the course might
continue visiting the on-site tutorials. However, we have not seen any deviation
from previous semesters.

Dropout furthermore threatens conclusions drawn for RQ1, especially Tasks
2 to 4 might be affected, as only four to eight students participated in the
control group. However, as mentioned above, the self-selection seems to be
a rather minor threat to internal validity. Putting this into perspective: Our
data analysis is mainly exploratory to identify avenues for future work, these
imbalances between the groups do not threaten our obtained insights. Specifi-
cally, the main insights from our study are conversational patterns and prompt
purposes for which no control group is required.

Finally, to continue with the next task, participants need to select from the
following options after each response from the chatbot: The answer is helpful,
The answer is wrong, I don’t understand the answer, The answer is incomplete,
The answer is imprecise, There was a technical problem. This might introduce
bias, as participants want to continue quickly. However, we used the indicators
to identify participants who primarily struggle with technological problems.
As this did not occur during data collection, we do not derive deeper insights
from them.

6.2 External Validity

The self-selection of participants to the experimental and control condition
could further threaten external validity, as we did not measure or control
participants’ familiarity with and interest in chatbots. Finally, the results
are limited to similar settings as in our study, especially to inexperienced
programmers. Nevertheless, inexperienced programmers constitute a consid-

Interaction Patterns of Programming Beginners with a Conversational Chatbot 33

erable share of developers who use LLMs, and inexperienced might also count
for on-boarding programmers who profit from LLMs, making the results still
applicable to a sufficiently large context.

6.3 Statistical Conclusion Validity

We do not report a threat here, but explain our rational on why we do not
compute statistical tests on our data. The obtained samples are too small
(e.g., a control group of size four) and imbalanced to derive meaningful and
reliable insights from a significant (or insignificant) result. Instead, we report
the difference in percentage between the groups as an interpretable measure
of effect size.

6.4 Construct validity

We measure the performance of programming beginners by taking the per-
centage of points participants achieved in the 30 minutes they were solving
a tasks. This is a one-dimensional approach to measuring performance, but
since our study is mainly exploratory to provide an initial investigation of
programming beginners’ performance and chatbot interactions, this is a use-
ful compromise between giving students concrete tasks on which they can use
a chatbot (allowing us to observe chatbot usage in a realistic scenario) and
observing performance. As with every exploratory study, our results can guide
the way to generate hypotheses for future research rather than validating them.

7 Conclusion

Code assistants have made their way into programming and are here to stay.
Especially the advent of ChatGPT has boosted the application scenarios, as
it is not restricted to code generation, but it can also explain code and related
concepts, making it popular as tool to translate concepts into code, thereby
helping programming beginners. But how do they use code assistants?

To answer this question, we conducted a study with programming begin-
ners who used a vanilla chatbot based on GPT-3.5 to solve typical tasks in
a CS2 course. By comparing the submitted solutions between programming
beginners who use a chatbot and those who do not, we validate the general
observation that some programming beginners, can solve tasks better when us-
ing such a chatbot. Furthermore, in 129 conversations between programming
beginners and the chatbot, we observed their behavior and identified different
conversation structures, some more successful than others. Especially when
participants use the chatbot to refine or test generated or self-implemented
code, they were more successful in solving programming tasks, compared to
programming beginners who focused on generating code or requesting basic
information on concepts or programming-language specific information.

34 Alina Mailach et al.

Thus, we cannot just give vanilla chatbots to students as tools to learn
programming, but we additionally need to give proper guidance on how to use
them—otherwise, students tend to use it mainly for code generation without
further reflection on or evaluation of generated code, which can lead to code
of lower correctness, even for professional programmers. Thus, it is imperative
that in conjunction with adopting programming assistants, also prompt en-
gineering is adopted, so that the drawbacks of using programming assistants
do not outweigh the benefits of being more productive and having support for
programming whenever necessary.

Acknowledgements We thank the anonymous reviewers for their detailed and insightful
comments, which have significantly improved our paper.

Alina Mailach and Norbert Siegmund’s work has been supported by the Federal Min-
istry of Education and Research of Germany and by Séchsische Staatsministerium fiir Wis-
senschaft, Kultur und Tourismus in the programme Center of Excellence for Al-research
“Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig”, project
identification number: ScaDS.Al. Norbert Siegmund’s work has been funded by the German
Research Foundation (SI 2171/2-2).

Data Availability

The material and data from this study are available from GitHub: https:
//github.com/mailach/0Ok-pal-we-have-to-code-that-now

References

1. Barke, S., James, M.B., Polikarpova, N.: Grounded Copilot: How Programmers Inter-
act with Code-Generating Models (2022). URL http://arxiv.org/abs/2206.15000.
ArXiv:2206.15000 [cs]

2. Becker, B.A.: An Effective Approach to Enhancing Compiler Error Messages. In: Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education, pp.
126-131. ACM, Memphis Tennessee USA (2016). DOI 10.1145/2839509.2844584

3. Becker, B.A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., Santos, E.A.:
Programming Is Hard - Or at Least It Used to Be: Educational Opportunities and Chal-
lenges of AI Code Generation. In: Proceedings of the 54th ACM Technical Symposium
on Computer Science Education, vol. 1, pp. 500-506. ACM, Toronto ON Canada (2023).
DOI 10.1145/3545945.3569759

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., Amodei, D.: Language Models are Few-Shot Learners. In:
Advances in Neural Information Processing Systems, vol. 33, pp. 1877-1901. Curran
Associates, Inc. (2020)

5. Choudhuri, R., Liu, D., Steinmacher, I., Gerosa, M., Sarma, A.: How far are we? the
triumphs and trials of generative ai in learning software engineering. In: Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering, pp. 1-13

2024

6.](Denm)/, P., Becker, B.A., Leinonen, J., Prather, J.: Chat Overflow: Artificially Intelligent
Models for Computing Education - renAlssance or apocAlypse? In: Proceedings of the
2023 Conference on Innovation and Technology in Computer Science Education, ITiCSE
2023, vol. 1, pp. 3-4. ACM, New York, NY, USA (2023). DOI 10.1145/3587102.3588773

Interaction Patterns of Programming Beginners with a Conversational Chatbot 35

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Denny, P., Kumar, V., Giacaman, N.: Conversing with Copilot: Exploring Prompt Engi-
neering for Solving CS1 Problems using Natural Language. In: Proceedings of the 54th
ACM Technical Symposium on Computer Science Education, SIGCSE 2023, vol. 1, p.
1136-1142. ACM (2023)

Denny, P., Prather, J., Becker, B.A., Finnie-Ansley, J., Hellas, A., Leinonen, J., Luxton-
Reilly, A., Reeves, B.N., Santos, E.A., Sarsa, S.: Computing Education in the Era of
Generative AI (2023). URL http://arxiv.org/abs/2306.02608

Finnie-Ansley, J., Denny, P., Luxton-Reilly, A., Santos, E.A., Prather, J., Becker, B.A.:
My AI Wants to Know If This Will Be on the Exam: Testing OpenAI’s Codex on CS2
Programming Exercises. In: Proceedings of the 25th Australasian Computing Education
Conference, ACE ’23, p. 97-104. ACM, New York, NY, USA (2023). DOI 10.1145/
3576123.3576134

Frankford, E., Sauerwein, C., Bassner, P., Krusche, S., Breu, R.: Ai-tutoring in soft-
ware engineering education. In: Proceedings of the 45th International Conference on
Software Engineering: Software Engineering Education and Training, ICSE-SEET ’23.
ACM (2024)

Kazemitabaar, M., Chow, J., Ma, C.K.T., Ericson, B.J., Weintrop, D., Grossman, T.:
Studying the Effect of AI Code Generators on Supporting Novice Learners in In-
troductory Programming. In: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1-23. ACM, Hamburg Germany (2023). DOI

10.1145/3544548.3580919

Kazemitabaar, M., Hou, X., Henley, A., Ericson, B.J., Weintrop, D., Grossman, T.: How
novices use llm-based code generators to solve csl coding tasks in a self-paced learning
environment. In: Proceedings of the 23rd Koli Calling International Conference on
Computing Education Research, pp. 1-12 (2023)

Kuhail, M.A., Alturki, N., Alramlawi, S., Alhejori, K.: Interacting with Educational
Chatbots: A Systematic Review. Education and Information Technologies 28(1), 973~
1018 (2023)

Leinonen, J., Denny, P., MacNeil, S., Sarsa, S., Bernstein, S., Kim, J., Tran, A., Hellas,
A.: Comparing Code Explanations Created by Students and Large Language Models. In:
Proceedings of the 2023 Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2023, vol. 1, p. 124-130. Association for Computing Machinery,
New York, NY, USA (2023). DOI 10.1145/3587102.3588785

Leinonen, J., Hellas, A., Sarsa, S., Reeves, B., Denny, P., Prather, J., Becker, B.A.: Using
Large Language Models to Enhance Programming Error Messages. In: Proceedings of
the 54th ACM Technical Symposium on Computer Science Education V. 1, pp. 563—569.
ACM, Toronto ON Canada (2023). DOI 10.1145/3545945.3569770

Liang, J.T., Yang, C., Myers, B.A.: A Large-Scale Survey on the Usability of AI Pro-
gramming Assistants: Successes and Challenges. In: 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE), pp. 605-617. IEEE Computer Society, Los
Alamitos, CA, USA (2024)

Liu, R., Zenke, C., Liu, C., Holmes, A., Thornton, P., Malan, D.J.: Teaching CS50 with
Al Leveraging Generative Artificial Intelligence in Computer Science Education. In:
Proceedings of the 55th ACM Technical Symposium on Computer Science Education V.
1, SIGCSE 2024, p. 7. ACM, New York, NY, USA (2024). DOI 10.1145/3626252.3630938
MacNeil, S., Kim, J., Leinonen, J., Denny, P., Bernstein, S., Becker, B.A., Wermelinger,
M., Hellas, A., Tran, A., Sarsa, S., Prather, J., Kumar, V.: The Implications of Large
Language Models for CS Teachers and Students. In: Proceedings of the 54th ACM Tech-
nical Symposium on Computer Science Education V. 2, pp. 1255-1255. ACM, Toronto
ON Canada (2022). DOI 10.1145/3545947.3573358

MacNeil, S., Tran, A., Hellas, A., Kim, J., Sarsa, S., Denny, P., Bernstein, S., Leinonen,
J.: Experiences from Using Code Explanations Generated by Large Language Models
in a Web Software Development E-Book. In: Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, SIGCSE 2023, p. 931-937. ACM
(2023). DOI 10.1145/3545945.3569785

Meyer, B.: What Do ChatGPT and Al-based Automatic Program Generation Mean
for the Future of Software (2022). URL https://cacm.acm.org/blogs/blog-cacm/
268103-what-do-chatgpt-and-ai-based-automatic-program-generation-mean-for_
the-future-of-software/fulltext

36

Alina Mailach et al.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Mozannar, H., Bansal, G., Fourney, A., Horvitz, E.: Reading Between the Lines: Mod-
eling User Behavior and Costs in Al-assisted Programming (2023)

Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., Myers, B.: Using an llm to
help with code understanding. In: 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), pp. 881-881. IEEE Computer Society, Los Alamitos, CA,
USA (2024)

Ouh, E.L., Gan, B.K.S., Jin Shim, K., Wlodkowski, S.: ChatGPT, Can You Generate So-
lutions for my Coding Exercises? An Evaluation on its Effectiveness in an undergraduate
Java Programming Course. In: Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1, ITIiCSE 2023, p. 54-60. Association
for Computing Machinery, New York, NY, USA (2023). DOI 10.1145/3587102.3588794
Perry, N., Srivastava, M., Kumar, D., Boneh, D.: Do Users Write More Insecure Code
with AT Assistants? In: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2785-2799 (2023)

Prather, J., Denny, P., Leinonen, J., Becker, B.A., Albluwi, 1., Caspersen, M.E., Craig,
M., Keuning, H., Kiesler, N.; Kohn, T., Luxton-Reilly, A., MacNeil, S., Petersen, A.,
Pettit, R., Reeves, B.N., Savelka, J.: Transformed by Transformers: Navigating the Al
Coding Revolution for Computing Education: An ITiCSE Working Group Conducted
by Humans. In: Proceedings of the 2023 Conference on Innovation and Technology in
Computer Science Education V. 2, pp. 561-562. ACM, Turku Finland (2023). DOI
10.1145/3587103.3594206

Prather, J., Reeves, B.N., Denny, P., Becker, B.A., Leinonen, J., Luxton-Reilly, A.,
Powell, G., Finnie-Ansley, J., Santos, E.A.: ”It’s Weird That It Knows What I Want”:
Usability and Interactions with Copilot for Novice Programmers. ACM Transactions
on Computer-Human Interaction 31(1) (2023). DOI 10.1145/3617367

Robins, A.V.: 12 novice programmers and introductory programming. The Cambridge
handbook of computing education research pp. 327-376 (2019)

Ross, S.I., Martinez, F., Houde, S., Muller, M., Weisz, J.D.: The Programmer’s Assis-
tant: Conversational Interaction with a Large Language Model for Software Develop-
ment. In: Proceedings of the 28th International Conference on Intelligent User Inter-
faces, IUT 23, p. 491-514. ACM (2023). DOI 10.1145/3581641.3584037

Sandoval, G., Pearce, H., Nys, T., Karri, R., Garg, S., Dolan-Gavitt, B.: Lost at C: A
User Study on the Security Implications of Large Language Model Code Assistants. In:
32nd USENIX Security Symposium (USENIX Security 23), pp. 2205-2222. USENIX
Association, Anaheim, CA (2023)

Shoufan, A.: Can students without prior knowledge use chatgpt to answer test questions?
an empirical study. ACM Transactions on Computing Education 23(4), 1-29 (2023)
Siegmund, J., Kéastner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring and Modeling
Programming Experience. Empirical Software Engineering 19, 1299-1334 (2014)
Vaithilingam, P., Zhang, T., Glassman, E.L.: Expectation vs. Experience: Evaluating the
Usability of Code Generation Tools Powered by Large Language Models. In: Extended
Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, CHI
EA ’22. ACM, New York, NY, USA (2022). DOI 10.1145/3491101.3519665

Verleger, M., Pembridge, J.: A Pilot Study Integrating an Al-driven Chatbot in an
Introductory Programming Course. In: 2018 IEEE Frontiers in Education Conference
(FIE), pp. 1-4 (2018). DOI 10.1109/FIE.2018.8659282

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V., Zhou, D.:
Chain of Thought Prompting Elicits Reasoning in Large Language Models. Advances
in Neural Information Processing Systems 35, 2482424837 (2022)

Weisz, J.D., Muller, M., Ross, S.I., Martinez, F., Houde, S., Agarwal, M., Talamadupula,
K., Richards, J.T.: Better Together? An Evaluation of AI-Supported Code Translation.
In: 27th International Conference on Intelligent User Interfaces, IUT ’22, p. 369-391.
ACM, New York, NY, USA (2022). DOI 10.1145/3490099.3511157

Wermelinger, M.: Using GitHub Copilot to Solve Simple Programming Problems. In:
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1, pp. 172-178. ACM, Toronto ON Canada (2023). DOI 10.1145/3545945.3569830

