
1

CfgNet: A Framework for Tracking
Equality-Based Configuration Dependencies

Across a Software Project
Sebastian Simon, Nicolai Ruckel, and Norbert Siegmund

Abstract—Modern software development incorporates various technologies, such as containerization, CI/CD pipelines, and build tools,
which have to be jointly configured to enable building, testing, deployment, and execution of software systems. The vast configuration
space spans several different configuration artifacts with their own syntax and semantics, encoding hundreds of configuration options and
their values. The interplay of these technologies requires some level of coordination, which is realized by matching configurations. That is,
configuration options and their according values may depend on other options and values from entirely different technologies and artifacts.
This creates non-obvious configuration dependencies that are hard to track. The missing awareness and overview of such configuration
dependencies across diverse configuration artifacts, tools, and frameworks can lead to dependency conflicts and severe configuration
errors. We propose CFGNET, a framework that models the configuration landscape of a software project as a configuration network in an
extensible and artifact-independent way. This way, we enable the early detection of possible dependency violations and proactively
prevent misconfigurations during software development and maintenance. In a literature study, we found that the most common form of
dependencies is the equality of values of different options. Based on this result, we developed an equality-based linker to determine
dependent options across different artifacts. To demonstrate the extensibility of our framework, we also implemented nine plugins for
popular technologies, such as Maven and Docker. To evaluate our approach, we injected and violated five real-world configuration
dependencies extracted from Stack Overflow, which we support with our technology plugins, in five subject systems. CFGNET found all
injected dependency violations and four additional ones already present in these systems. Moreover, we applied CFGNET to the commit
history of 50 repositories selected from GitHub and found dependency conflicts in about two thirds of these repositories. We manually
inspected 883 conflicts, with about 89 % true positives, demonstrating the need to reliably track cross-technology configuration
dependencies and prevent their misconfiguration.

Index Terms—Configuration Dependencies, Configuration Conflicts, Services and Components.

F

1 INTRODUCTION

Modern software development often incorporates various
technologies, such as containerization, build tools, and
continuous integration and delivery (CI/CD) pipelines.
Developers need to configure these technologies to build, test,
deploy, and execute software systems. On top of that joint
configuration space, software systems are often not singular
and independent entities, but interact with other software
systems, such as databases, operating systems, or external
services that all need to be jointly configured. Therefore,
the vast configuration space spans over different types of
configuration artifacts (e.g., YAML files, Dockerfiles, and
build files) with their own syntax and semantic [1]. To ensure
the interplay and interoperability of all technologies, config-
uration options and their according values may depend on
other options and values from entirely different technologies.
These dependencies among different artifacts, frameworks,
and tools create non-obvious and hard to track configuration
dependencies.

The missing awareness of such configuration dependen-
cies can lead to system failures, security vulnerabilities, or
performance degradation [2], [3], [4]. Specifically, in the worst
case, a single change of a configuration in the technology
stack may cause another framework, or even another step
in the CI/CD pipeline to fail. Fixing those cross-technology
configuration-dependency errors can be cumbersome and
time-consuming. Instead of fixing configuration bugs, we
should concentrate on avoiding misconfigurations in the first

place. However, developers miss an integrated overview of
configuration dependencies across the diverse configuration
artifacts, tools, and frameworks. Hence, all of these tools,
which originally had the purpose of simplifying the devel-
opment and delivery process, introduce further complexity
and make it more challenging for developers instead.

1 <?xml version="1.0"?>
2 <project>
3 <artifactId>app</artifactId>
4 <version>1.0</version>
5 </project>
6

Listing 1: Maven build file defining the name of the generated
JAR file.

1 FROM java:8
2 ADD target/app-1.0.jar app.jar
3 EXPOSE 8761
4 ENTRYPOINT ["java", "-jar", "/app.jar"]

Listing 2: Exemplary Dockerfile deploying a JAR file.

As an example, we consider a typical Java project that is
deployed in a Docker container. The application’s build file is
shown in Listing 1, in which we want to change the version
number from 1.0 to 1.1, since we introduced a security fix.
Now, we deploy the supposedly fixed software using our
Dockerfile in Listing 2, possibly passing all tests of the CI
server. Yet, we are still using the old version of the program



2

in production. In this small example, it is easy to see that
we forgot to change the version number in the Dockerfile to
grab the new JAR file. Unfortunately, this scenario is quite
realistic, as the security developer may not be aware of the
DevOps infrastructure of the software and may test the fix
only locally.

This example demonstrates a dependency between two
configuration options for which we need to keep both
configuration values (version number and file name of the
JAR) consistent. Otherwise, we will encounter a dependency
conflict between Docker and Maven, which leads in the worst
case to a configuration error. Although trivial, this exact
example manifests in practice over and over again: We found
exactly this configuration dependency in different Stack
Overflow posts. Only when bringing both configuration files
together makes the dependency obvious, but in a production
setting the same dependency is hidden among dozens of
configuration files, rendering it far from obvious. Therefore,
even for such a trivial example, knowing this dependency
is challenging, as both configuration values are encoded
in different configuration artifacts and there is no obvious
connection between them.

In practice, those dependency problems can be quite
complicated, stretching over multiple artifacts, deployment
stages, and environments. Sometimes there are even multiple
places to adjust a setting, which could overwrite each other,
and it is often unclear which of those values was applied last.
For example, Sayagh et al. [5] provide a relevant example
where the configuration of the maximum memory limit of a
PHP script that a Web application is allowed to use can be
specified in the configuration artifact of the Web server, PHP
interpreter, or content management system.

There is a high demand for a good solution for these
kinds of problems, as configuration-related problems have
become one of the main causes for system failures in recent
years [3]. To improve the tedious and error-prone manual con-
figuration process of software projects, automation pipelines,
and technology stacks, researchers have tried to develop
mechanisms to detect and solve configuration problems
automatically. Unfortunately, existing solutions are often
restricted to isolated tool sets, for instance, Docker and Java,
or PHP [6], or focus mainly on the diagnosis and detection
of configuration errors. To the best of our knowledge, no
previous approach attempts to address cross-technology
configuration dependencies in a proactive, framework-, and
language-independent way.

In this work, we address the problem of cross-technology
configuration dependencies. As a first step, we conducted
a systematic literature study to understand the manifold
forms of configuration constraints and dependencies within
software projects. Our results reveal a wide range of con-
straints on individual options as well as dependencies
across multiple options. We also found that configuration
dependencies are not limited to a single technology, but can
span across the whole technology stack. A major finding is
that value equality is an important form of cross-technology
dependencies encountered in academic literature.

We propose CFGNET [7], a plugin-based framework for
detecting and tracking dependencies among configuration
options across different configuration artifacts. CFGNET
represents configuration options of configuration artifacts

as trees and connects them to build a network, where links
between the leaf nodes of a tree correspond to the depen-
dencies between configuration options. Our idea is to have
a framework in which technology plugins analyze different
configuration files (e.g., Dockerfiles or build scripts) and
create nodes for configuration options with their user-defined
values. Linker plugins then connect the nodes in case a depen-
dency exists using a specific linker heuristic. Once a network
is initialized, we can check whether changes to values of
configuration options require changes of other options by
traversing the configuration network. This approach enables
consistency checks as Git hooks, suggestions of configuration
values, and detections of potential violations of configuration
dependencies. To demonstrate CFGNET’s extensibility, we
already implemented nine plugins for popular technologies
that require cross-technology configuration. We also realized
a general linker based on equality of configuration values,
initially targeting one of the most encountered forms of
cross-technology configuration dependencies.

To evaluate CFGNET’s ability to model the configura-
tion landscape of software projects and detect dependency
conflicts using configuration networks, we followed state-
of-the-art practice [4], [8], [9] by violating real-world con-
figuration dependencies extracted from Stack Overflow in
five software projects. In doing so, we simulated CFGNET’s
main application scenario and demonstrated that it is able
to efficiently construct a configuration network and detect
dependency conflicts. Moreover, we applied CFGNET to
the commit history of 50 repositories selected from GitHub
and found dependency conflicts in about two thirds of
these repositories, indicating the practical relevance of cross-
technology configuration dependencies. Finally, we manually
reviewed 883 detected conflicts and annotated 89% of them
with yes (i.e., true positives), showing the relevance as well
as the applicability of our approach for real-world software
projects. The evaluation scripts and further information can
be found at our supplementary website [10].

To summarize, we make the following contributions:
• A systematic analysis of literature on configuration

constraints and dependencies, classifying the manifold
forms of configuration constraints and dependencies
within software projects.

• CFGNET, a plugin-based framework that represents
configuration options and code artifacts as nodes in
a network of trees, where the links between the leaf
nodes correspond to the dependencies between them.

• A technique for tracking equality-based configuration
dependencies in an extensible and artifact-independent
way using configuration networks, and thus a possibility
to detect violation of configuration dependencies by
evaluating the changes in the network.

• The ability to integrate diverse solutions, such as tech-
nology and linker plugins, into a common data structure
and conduct analyses on it by leveraging the plugin-
based architecture of CFGNET.

• An evaluation of CFGNET’s main application scenario
by purposefully violating dependencies in five subject
systems, demonstrating CFGNET’s ability to detect
dependency conflicts and its potential for daily use.

• A comprehensive analysis of the commit history of 50
different repositories selected from GitHub, demonstrat-



3

ing the need to reliably track cross-technology configu-
ration dependencies and prevent their misconfiguration.

• A supplementary code repository [7] and website [10],
where the framework, data, and scripts are publicly
available.

2 STATE OF THE ART

The goal of related approaches tackling the configuration
landscape and related problems can be roughly divided into
three categories: diagnosis of configuration errors, detection
of configuration errors, and detection of configuration de-
pendencies.

2.1 Diagnosis of Configuration Errors
Static and dynamic program analyses are employed to detect
configuration errors. ConfAid uses dynamic taint analysis to
identify the root cause of misconfigurations [11]. Rabkin and
Katz [12] map each line of a program to a set of configuration
dependencies using static program analysis. This way, users
can query the table with an error message if they encounter
a configuration error to find the option that fixes the error.

ConfDiagnoser by Zhang [13] uses a pre-built database
of erroneous program executions to report a ranked list of
suspicious configuration options, which deviate from correct
execution profiles. Sayagh et al. [5] investigate Cross-stack
Configuration Errors (CsCE) and propose a technique to
recommend culprit configuration options in a LAMP stack.
They take an error message as input and then leverage
existing code slicing techniques, which are applied in each
layer of the stack to generate a cross-stack slice dependency
graph. By traversing the dependency graph, they recommend
the most likely configuration options that caused a CsCE.

The main difference of the aforementioned approaches to
CFGNET is that we provide a static as well as a language- and
tool-independent approach that links configuration options
outside a running application, crossing the boundaries of sev-
eral tools and frameworks. In addition, we pursue a proactive
(i.e., preventing configuration dependency violations) rather
than a reactive (i.e., fixing configuration errors) approach.

2.2 Detection of Configuration Errors
Many approaches aim to detect configuration errors. A
common approach relies on machine learning techniques
to automatically extract configuration rules. For example,
the frameworks Config [14], ConfigV [15], and EnCore [16]
learn configuration rules by specification mining to ensure
the correctness of configurations. We can make use of such
configuration rules in our linker component.

Behrang et al. [17] propose SCIC to tackle inconsistencies
in multi-language software projects. They use static analysis
to create a unique set of preferences from the source code
and compare it against preferences obtained from higher
level APIs to report configuration inconsistencies.

Staccato by Toman and Grossman [18] focuses on eval-
uating runtime configurations by detecting stale data from
old configurations in programs that run on the JVM to avoid
configuration errors. Staccato requires developers to change
their source code such that all configuration related data
changes are delegated to the tool. Xu et al. [9] focus on

latent configuration errors (LC errors), which occur due to
configuration parameters that are neither used nor checked
during normal operations. To this end, they propose the tool
PCheck to analyze source code and generate configuration-
checking code that emulates executions to check for illegal
configuration options in Java and C programs.

While all the aforementioned approaches contribute
valuable solutions to today’s configuration problems, they
are mostly language-dependent and require heavy in-depth
analysis upfront in detecting configuration errors.

2.3 Detection of Configuration Dependencies
Closer to our work are approaches tackling configura-
tion dependencies, which, in the worst case, may lead to
configuration errors when violated. Chen at el. [4] study
configuration dependencies within and across software
components with the goal of deriving types of configuration
dependencies with their common code patterns. Using the
results from their study, they developed cDep, a tool that
detects configuration dependencies from Java bytecode using
static program analysis.

Ramachandran et al. [19] provide deeper insights about
configuration-parameter dependencies between different
component instances of software projects. They first analyze
configuration data accessed via APIs to estimate candidates
of configuration dependencies. Then, they compute weights
for each dependency using a heuristic, and provide a ranked
list of dependencies so that administrators can quickly
identify true dependencies.

Lillack et al. [20] developed Lotrack to track configuration
options from the moment they are loaded in the program
using static taint analysis. Applying their tool results in
a configuration map that explains which code fragments
are affected by an option and where and how options
may interact. Since their tool targets a different application
scenario, it is limited to Java and cannot track configuration
options across system boundaries.

With a light-weight static analysis, Metcalf et al. [21]
extract control-flow and data-flow dependencies among con-
figuration parameters. Their goal is to visualize interactions
between configuration options at component level using an
interaction graph.

With our approach, we complement the above approaches
in the following aspects. First, related approaches concentrate
mostly on a singular language or tool, whereas we pursue a
plugin-based approach to be technology-agnostic. We believe
that research should concentrate more on a framework-
based development, since one-size-fits-all tools are often
outdated, not maintained, and lack adoption in practice.
Second, while previous approaches mainly aim at detecting
configuration dependencies, they do not track configuration
dependencies to enable the early detection of dependency
violations. Third, CFGNET prevents possible violations of
configuration dependencies by acting during the change of
any configuration artifact (e.g., as a Git hook). Hence, we
follow a proactive rather than a reactive (e.g., fixing an error)
approach. Finally, we believe that existing work and their
proposed techniques can be incorporated into CFGNET due
to our plugin-based architecture (e.g., as alternative linker
plugins), thereby establishing a common ground for a range
of research approaches.



4

3 CONSTRAINTS AND DEPENDENCIES

Every single configuration option may not only have its
own constraints, but can also introduce constraints between
multiple options across the used technology stack. We
therefore distinguish between unary and n-ary configuration
constraints. The former describes the requirements that a
value of a single configuration option should satisfy, such as
the type, value range, or syntactic format [8]. For instance,
a port is constrained by a data type and value range, which
should be an integer in the range from 0 to 65535 [22].
N-ary constraints represent dependencies among multiple
configuration options [23]. For instance, the port of an
application introduces a constraint between multiple options,
as the port is often specified in different configuration
artifacts, such as in a Dockerfile or docker-compose.yml.
Note that in the rest of the paper we refer to n-ary constraints
as configuration dependencies (dependencies for short).

To obtain a large and robust overview about the diverse
forms of unary constraints and dependencies, we conducted
a literature study. Our methodology adopts the guidelines
for performing a systematic literature review proposed by
Kitchenham and Charters. [24] in the following steps: iden-
tification of research, selection of primary studies, and data
extraction. In what follows, we describe our methodology in
detail.

3.1 Methodology
First, we collected an initial set of papers by searching for
keywords (i.e., configuration dependencies, configuration
constraints, misconfiguration, configuration error) in three
major academic libraries: IEEE Xplore, ACM Digital Library,
and Google Scholar [25]. The rationale of having these
keywords is to set the starting point of the literature study on
relevant papers dealing with configuration constraints, de-
pendencies, and their effects in software systems. Moreover,
we selected the three major libraries to obtain a diverse set of
initial papers. We applied our keywords to each library and
extracted the top ten papers sorted by relevance, resulting in
an initial set of 120 papers.

Then, two authors individually annotated the papers in
the initial set either with relevant, not-relevant, and duplicate
using our inclusion criteria. Specifically, we deemed a
paper relevant if it addressed configuration constraints and
dependencies in software systems, tackled the effects of
their violations, or classified them. By reading the abstract,
introduction, and conclusion for each paper in our initial
set, we checked whether they met our inclusion criteria and
annotated the papers accordingly. For the initial set of papers,
we calculated the inter-annotator agreement using Cohens
Kappa statistic [26], which was 0.87, indicating high agree-
ment. However, we noticed that the initial inclusion was not
clearly enough defined, since the two authors had different
views on which papers to include and exclude. To this end,
we sharpened the inclusion criteria and additionally defined
exclusion criteria as follows: We also deem paper as relevant
that address configuration constraints or dependencies in
software-product-lines (SPL) and source code. By contrast,
we deem paper as not-relevant that address hardware, non-
technical, or ethical constraints and dependencies, or propose
configuration modeling languages, technologies, or tools.

Moreover, we dropped papers that deal with network, cyber-
physical, or business process configuration. We then checked
all papers in the initial set again using the final inclusion and
exclusion criteria and annotated them accordingly, receiving
a Cohens Kappa statistic of 1.0, which indicated perfect
agreement among the annotators. With this approach, we
finally obtained an initial set of 24 relevant paper.

In the next step, we extended our initial set of relevant
papers, following a forward and backward snowballing
approach [27]. That is, we first included papers that have
been cited by the papers in our initial set and then added
papers that referenced the papers in our initial set. This
way, we received a set of 943 potentially relevant papers.
Then, the main author applied again the same inclusion and
exclusion criteria to all added papers to identify the relevant
ones. Following this approach, we obtained a final set of 106
relevant papers. To measure the inter-annotator agreement, a
second author randomly sampled 20 % of the final relevant
and not-relevant papers and annotated them according to the
inclusion and exclusion criteria. We received again a Cohen’s
kappa statistic of 1.0, indicating perfect agreement and a
sound and reproducible criteria.

Finally, we read the full text of all relevant papers
and extracted all types of configuration constraints and
dependencies. Specifically, we extracted constraints and
dependencies from concrete examples, but also from the
proposed approaches in a paper. Two authors discussed
the extracted configuration constraints and dependencies
and assigned them to different categories. We based our
categories with small modifications on the work of Xu et
al. [8] and Chen et al. [4]. In addition to that, we also classified
the extracted configuration dependencies either in intra- or
cross-technology dependencies.

TABLE 1: Classification of unary configuration constraints.

Unary
Constraints

# Description Example

Syntax 32 An option must cor-
respond to a specific
syntax pattern.

The Duration option in
xml files must conform
to the pattern: 00:00:[0-
9]2+ [28].

Value Range 30 The value of an op-
tion must be within a
specifc value range.

The blocksize option
of mke2fs has a
value range of 1024-
65536 [23].

Data Type 30 An option must cor-
respond to a specific
data type.

In MySQL, the option
max_connections must
specify a numerical
value [29].

Semantic 13 A semantic constraint
refers to the sematic
type of an option.

The port should not be
occupied [30].

3.2 Results

The results of our literature study are shown in Table 1
and 2. We identified four types of unary constraints that
restrict the value of options according to their syntax, value
range, data type, and semantic. The majority of unary
constraints refer to syntax, value range, and data type



5

TABLE 2: Classification of configuration dependencies. The columns #, # Intra and # Cross represent the number of total,
intra-, and cross-technology configuration dependencies found for each type.

Dependencies # # Intra # Cross Description Example

Value Equality 47 19 28 The value of an option must be equal
to the value of another option.

In Apache, the options NameVirtualHost and VirtualHost
should be set to the same name, otherwise the virtual host
is loaded in a wrong order [2].

Control 29 22 7 The usage of an option depends on
the value of another option.

In PostgreSQL, the option commit_siblings is enabled if
fsync is not set to zero [8].

Value Inequality 19 12 7 The value of an option must differ
from the value of another option.

In PHP, mysql.max_persistent must be smaller than the
max_connections in MySQL [31].

Behavioral 11 5 6 Multiple options co-operate to influ-
ence the behavior of the systems.

In Hadoop Common, the host and port options are
combined to create the IP address [4].

Overwrite 9 3 6 The value of an option is overwritten
by the value of another option.

The option dfs.client.retry.policy.spec defines the timeouts
and retries for HDFS clients. YARN overwrites this
options with its own option [4].

constraints, followed by a few unary constraints referring to
the semantic of an option. We also identified five types of
configuration dependencies, which we additionally classified
into intra- and cross-technology dependencies. Here, the
majority of extracted dependencies points to value equality
as cause of configuration dependencies. A similar picture
results from the number of cross- and almost also of intra-
technology dependencies, as the majority points again to
value (in-) equality. Especially interesting for our use case are
cross-technology constraints. Here, value equality has been
reported in over 51 % of the cases. The second most extracted
dependencies refer to control dependencies which often
represent Boolean expressions involving multiple options.
We also list value in-equality as a special case. Although it can
be detected with similar technologies, this detection process
is prone to produce many false positives. Furthermore, we
found a few special cases that did not fit into our categories,
such as structural or occurrence constraints, which affect
the whole configuration artifact, and control- or data-flow
dependencies of options in source code.

Overall, our results reveal clearly separable unary con-
straints and dependencies. While syntax, value range, and
data type constraints are nearly equally prevalent among
the identified unary constraints, value equality is the most
frequent form of configuration dependencies found in our
literature corpus. This may indicate that related work has
primarily focused on value equality as cause of config-
uration dependencies, as it is relatively easy to detect.
Although value inequality is also comparatively easy to
detect, it quickly becomes impractical, as it would infer
dependencies among all configuration options with different
values, resulting in many false positives. Conversely, the
other types of dependencies are often more complex than
dependencies due to value relationships, and thus more
challenging to identify unless explicitly documented. That
is, these dependencies require an upfront specification in
form of cross-technology variability models, which are not
available. Moreover, we found that dependencies are not
limited to single technologies, but can also span the entire the
technology stack. This leads to manifold and complex cross-
technology dependencies, which manifest among dozens
of configuration artifacts, each with its own syntax and

semantic, rendering them far from obvious.
Due to the diversity and complexity of cross-technology

configuration dependencies, efficiently tracking these de-
pendencies across a software project is a challenging but
important task to proactively prevent misconfigurations.
Unfortunately, there is a lack of approaches tackling cross-
technology dependencies, since existing approaches are
mostly language specific and do not track cross-technology
dependencies within a software project. That is, they do not
aim at proactively preventing the violations of configuration
dependencies across the used technology stack. Our results
clearly show that tracking configuration dependencies based
on value equality represents an ideal starting point, as the
majority of cross-technology dependencies point towards
value equality as cause of the dependencies.

4 CONFIGURATION NETWORKS

Project Node

Artifact Node

Location

Option Node

Line number

Type

Link

rightleft

Value Node

Type

Value

+

+

+

Fig. 1: Meta model
of a configuration
network.

To model software artifacts, configura-
tion options, and dependencies within
a software project, we use a network of
trees as the underlying data structure. A
configuration network describes a soft-
ware project and its surrounding ecosys-
tem (i.e., CI/CD pipeline, containers,
build tools, etc.), in which each tree
corresponds to a part of the ecosystem
in terms of nodes representing artifacts,
options, and values. The leaf nodes of
the trees can be connected by links,
representing the dependencies among
options. This representation allows us
to detect and track configuration de-
pendencies across the used technology
stack. Configuration networks are built
from different types of nodes as shown
in the meta-model in Figure 1. Each
used configuration artifact, option, and
value is represented as a distinct node
type in this network and is connected
to all of its dependencies. The rational
of having a hierarchy of different node types is to efficiently
generate and compare networks. Moreover, this hierarchy



6

allows us to model not only simple key-value configuration
options, but also more complex configuration options, as
demonstrated in our introductory example. Next, we discuss
the different node types.

• Project node: The project node is the root of a configuration
network and represents the whole software project.

• Artifact nodes: An artifact node models an existing con-
figuration artifact, which can resemble different kinds of
configuration files. A plugin of our framework usually
covers a specific technology (e.g., Docker) and generates
the corresponding subtrees when parsing configuration
files for this technology (e.g., Dockerfiles).

• Option nodes: An option node represents a configuration
option specified in the corresponding artifact node, such
as a command, key, identifier, or a setting in general. It
is also possible that a plugin developer creates additional
option nodes, which are, for instance, composed of values
of other options. Moreover, option nodes can be further
specified with a configuration type (cf. Table 3). We base
the type system with small modifications on the work
of Li et al. [30]. To enable suggestions for fixing broken
dependencies, we establish a tracing from the network
to the physical place of the option by storing an option’s
location (i.e., line number in the configuration artifact).

• Value nodes: A value node represents an actual configura-
tion value associated with their configuration option, such
as a port or version number. Each value node v also points
to its parent option node v.parent and inherits its type.

• Link: A link l is a tuple (l.left , l.right) of value nodes that
represents a dependency between those nodes. We discuss
whether and where we establish links in Section 5.2.

TABLE 3: Available configuration types.

From Li et al. [30] time, port, version_number, memory, fraction,
speed, permission, count, size, ip_address,
username, mode, url, email, domain_name,
boolean, password

Own additions unknown, protocol, image, path, name, com-
mand, license number, id, pattern, environ-
ment, platform, language, type

Figure 2 illustrates the configuration network of our
introductory example. To construct the network CFGNET
iterates over all files of the software project, usually extracted
from a version control system (VCS). Then, for each file,
CFGNET selects the responsible plugin that has registered to
handle the current file type. A plugin usually matches to a
concept, parses the current file of the concept to construct the
artifact’s subtree, and adds it to the network. Here, CFGNET
finds two configuration artifacts (i.e., the Dockerfile and
pom.xml) and selects the responsible plugins (i.e., Docker
and Maven plugin). That is, the Docker and Maven plugin
parse the file of their concept, create the artifact’s subtree with
all option and values nodes, and add it to the network. Once
all files are parsed, the linker manager selects enabled linker
plugins, which finally link nodes based on their specific linker
criterion. Note that for demonstration purposes, the network
shows only nodes that are involved in the configuration
dependency with Maven’s executable name.

My Project

pom.xml

location: ./pom.xml

artifact id

location: line 3

type: name

app

version

location: line 4

type: version number

1.0

Dockerfile

location: ./Dockerfile

ADD

location: line 2

type: unknown

src

location: line 2

type: path

target/app-1.0.jar

executable name

location: line 3 and 4

type: path

target/app-1.0.jarLink

Fig. 2: Simplified configuration network of the example Java
project with Docker.

5 ARCHITECTURE

CFGNET’s architecture consists of three main parts: the
plugin manager, the linker manager, and the conflict detector
(see Figure 3). To create a network, CFGNET iterates over
all configuration artifacts of a software project. The plugin
manager chooses the right plugin for each artifact to update
the network together with the linker manager’s plugins,
which detects possible dependencies. Once a network is
created, the conflict detector can find potential dependency
issues by using this network as a reference.

Linker manager Plugin manager Conflict detector

Plugins

Filter

Blacklist

Linker

Configuration filesLocal blacklist Version control system

Network

Fig. 3: CFGNET’s architecture overview.

5.1 Plugin Manager

Plugins are the key success factor for our approach: they
determine how much information a configuration network
contains. Every plugin consists of two parts. First, a plugin
specifies rules based on file extensions or naming conventions
to select the configuration artifacts to be parsed. Second,
a plugin parses the selected artifact to find configuration
options and their values, which are then returned and added
as nodes to the artifact’s subtree. Plugins do not need to link
their nodes to the nodes created by other plugins. Instead,
they can solely rely on the linker plugins. All currently
implemented plugins and their corresponding filter rules
are shown in Table 4.



7

TABLE 4: Existing plugins with their type and filter rules.

Plugin Filter rule

Maven pom.xml
Docker Dockerfile
Docker-Compose docker-compose*.yml
Travis CI .travis.yml
Node.js package.json
Spring application*.yml | application*.properties
Pyproject pyproject.toml
TSconfig tsconfig.json
Cpyress cypress.json

Plugins are always technology-specific and incorporate
domain knowledge when parsing configuration files. That
is, plugin developers can encode their domain knowledge to
create nodes for hidden or implicit configuration options
and their values, such as aggregated option values, or
to add types for configuration options according to our
type system in Table 3. For example, in our introductory
example, the Maven plugin creates an additional node for
the executable name, which is computed by composing
the project name with an optional version number and a
packaging format, which defaults to JAR in this case. From
the Maven specification, we also know that the default folder
for the compiled files is target/, so we can prepend that to the
executable name and add the corresponding type.

The process for writing a new technology plugin is to
find a parser for the file type of the technology (usually
existing) and translate its results into nodes, which is usually
an easy task (e.g., traversing the parsed representation of
the configuration file and outputting the data types of our
network). More challenging is the inclusion of domain
knowledge, which is benefical to extract more complex
configuration options and add type information. Once a
technology plugin is implemented, the plugin usually does
not need to change, as it cover third-party technologies,
whose implementation is project-independent. Here, changes
are required only if the corresponding artifact changes its
syntax, which is a rare case in practice as this is considered a
breaking change. All existing plugins range from 63 to 385
lines of code and have been developed by the authors and
undergraduate students, indicating the low complexity and
effort of this task.

5.2 Linker Manager

We designed our framework to incorporate detected or
already known dependencies as links in the configuration
network. Links are created by linker plugins, which rely on
a specific linker heuristic and incorporate type information if
available. Since there a manifold forms of cross-technology
configuration dependencies within software projects, we con-
ducted the systematic literature study presented in Section 3.
Based on our results and in line with related work [4], [5],
we implemented a general linker plugin that relies on the
equality of configuration values to target the most frequent
form of cross-technology configuration dependencies found
in our literature corpus. That is, our equality-based linker

plugin assumes that configuration options depend on each
another if their configuration values are equal.

We are aware that the equality-based linker bears the risk
of creating false positives, as not all configuration option
whose values are equal have to be dependent on each other.
To mitigate such issues, we add two mechanisms. First,
the equality-based linker incorporates type information if
available in the linking process to prevent linking values
whose types are different. Second, we conducted pre-studies
to create a global blacklist βg of values. This way, we avoid
configuration values that bear the risk of being involved in
too many links, although they do not represent an actual
dependency between configuration options. For example,
we excluded Boolean values, which are almost always false
positives. Other entries in the global blacklist are Null, None,
Yes, and No. In addition, developers can create a local blacklist
βl with project-specific entries similar to Git’s gitignore file.
This enables developers to adapt the linking algorithm to
specific software projects in order to mitigate the risk of a
linker generating false positives.

The general linking process is described as follows. Once
a network is created, for each value node v, a linker iterates
through all value nodes V included in the network and
checks if they match the link criterion λ but not any of
the global filter βg and the local filter βl. For all detected
matches, the linker generates a link between the two value
nodes represented as a tuple l = (vi, vj) and adds that link to
the network. Equation 1 shows the linking approach of how
the equality-based linker obtains the set L of links between
configuration values in a network.

L = {(vi, vj) | vi, vj ∈ V ∧
link criterion︷ ︸︸ ︷
λ(vi, vj) ∧

filter︷ ︸︸ ︷
val(vi) /∈ βg, βl} (1)

The equality-based linker checks if two value nodes vi,
vj have the same value (cf. Equation 2):

λ(vi, vj) := val(vi) = val(vj) ∧ matching_types(vi, vj) (2)

In addition, the equality-based linker links value nodes
only if they have the same type (cf. Equation 3):

matching_types(vi, vj) := type(vi) = type(vj) (3)

Besides plugins for technologies, CFGNET can also be
easily extended by adding other or more specialized linker
plugins due to our plugin-based approach. Those linker
plugins may draw their linking heuristics from repository
mining or rely on specific rules. Note that the development
of specialized linker plugins is not the goal of this work,
as this would be an entirely different contribution in the
research directions of mining configuration errors and their
rules. However, our framework approach supports diverse
solutions, such as technology and linker plugins, in a
common data structure.

5.3 Conflict Detector

Storing links within a configuration network allows us
to detect dependency conflicts of configurations across a
software project. Those dependency conflicts occur when a
developer makes a change to a configuration in a way that
the values of two linked value nodes do not match anymore.



8

There are two causes for those conflicts. First, the values of
the two nodes are not equal anymore. Second, an artifact
or option node has been removed from an associated value
node.

The conflict detection module detects possible depen-
dency conflicts by creating a configuration network for the
current version of the software project and comparing it
with a reference network (e.g., from the last commit or from
a blueprint project). First, we compute the missing links
Lmissing , that is, all links that were present in the reference
network but are missing in the new one by computing the
relative difference of the links in the new network Nnew to
the old network Nold (cf. Equation 4):

Lmissing = {l | l ∈ Nold \Nnew} (4)

The absent links do not tell us the cause of their absence.
However, to provide suggestions on how to fix a missing
link due to inconsistent value changes, we need to find both
linked value nodes in the new network (cf. Equation 5):

Lequiv = {l′ |l′.left = Nnew .find(l.left)

∧ l′.right = Nnew .find(l.right)}
(5)

To this end, we need to find a value node with the
same parent as the original node in the new network (cf.
Equation 6):

N.find(v) = {v′ | v′ ∈ N ∧ v′.parent = v.parent} (6)

Equation 7 shows the definition of the set of potential
conflicts C which is defined by all links from Lequiv where
the values of the included value nodes are different from
each other according to the link criterion (cf. Equation 2):

C = {c | c ∈ Lequiv ∧ ¬λ(c.left , c.right)} (7)

We distinguish between three different types of conflicts.
The first type is a Modified Option Conflict, which is the
primary kind of conflict that CFGNET detects by default. A
Modified Option Conflict occurs when one or both value nodes
of a link changed their values in a way that they are not equal
anymore. The second and third types are Missing Artifact
and Missing Option Conflicts. Those conflicts are caused by a
missing value in the current network due to the removal of
the corresponding artifact or option. Removing an artifact or
option does not necessarily result in configuration conflicts.
However, faulty project setups, erroneous CI processes, or
just human error may cause the removal of artifacts or
options. Due to the configurability of CFGNET, the detection
of those conflicts can be enabled by the developers if desired.

Figure 4 shows how the conflict in our introductory
example is detected. First, CFGNET creates the reference
network using the plugins for Maven and Docker. During
that process, the linker creates a link between the two
matching values for Docker’s ADD and the executable name
in the pom.xml. When we change the version number in the
pom.xml and run CFGNET again, a new network is created
and the links in both networks are compared. The conflict
detector will then detect a missing link between the value
nodes for the executable name and ADD. By traversing the
tree from the unchanged value node to the corresponding
artifact node, we get the corresponding file name and line
number to suggest a possible fix using the new value (see
Figure 4).

My Project

pom.xml

location: ./pom.xml

artifact id

location: line 3

type: name

app

version

location: line 4

type: version number

1.1

Dockerfile

location: ./Dockerfile

ADD

location: line 2

type: unknown

src

location: line 2

type: path

target/app-1.0.jar

executable name

location: line 3 and 4

type: path

target/app-1.1.jarE

$ cfgnet validate /home/user/example
MODIFIED OPTION (b7407cb92b2fc55c57a8fad6461075b7af201ed0)

Modifed Option: "Executable Name" in artifact "pom.xml"
Value changed from "target/app-1.0.jar" to "target/app-1.1.jar"

Conflicts:
In file "/home/user/example/Dockerfile:2
Link with option "add::src" is missing
Modify option "add::src"
"target/app-1.0.jar" to "target/app-1.1.jar"

Fig. 4: By comparing the current network with the reference
network (cf. Figure 2), we see that the link shown with a
dotted red line is missing here. We can traverse the tree from
the other value node up to the corresponding artifact node
to inform the user how to fix the error.

6 EVALUATION: DEPENDENCY VIOLATION

To demonstrate CFGNET’s ability to model a software
project’s surrounding ecosystem and detect real-world de-
pendency conflicts, we evaluate our framework on real-
world dependency violations. To this end, we first extract
configuration dependencies from Stack Overflow (SO) posts
and inject one intra- and four cross-technology configuration
dependencies in five real-world software projects. Next, we
analyze whether we can detect those dependency violations
with CFGNET.

6.1 Stack Overflow Analysis

Although there are many approaches tackling configuration
errors and dependencies, to the best of our knowledge, no
readily available dataset of configuration dependencies and
their violations exists. To this end, we analyzed SO posts to
obtain a set of typical real-world intra- and cross-technology
configuration dependencies.

Methodology. We downloaded the SO dataset from the
Stack Exchange Data Dump on November 12, 2021 [32].
The dataset contains posts generated from 2008 to 2021 and
provides for each post metadata, such as the identifier, post
type, title, body, and tags. Moreover, a post contains access
metrics, such as the view, answer, and favorite count, as well
as a score determining its relevance.

Following previous SO analyses [33], [34], we created
a vocabulary with our technology-specific plugin names
(i.e., maven, docker, docker compose, travis, node.js, spring,



9

TABLE 5: Five real-world configuration dependencies extracted from SO, including four cross- and one intra-technology
configuration dependency.

ID Dependency Name Count Technologies Dependency Description

1 Executable Name 68 Spring, Maven,
Docker

Java applications that are built with Maven and deployed with Docker depend on
the executable name, which is specified in the application’s build and used in Docker
to add the executable to the file system of the container.

2 Internal Docker Dep. 63 Docker Docker’s ADD and ENTRYPOINT commands often refer to the same configuration
value, such as when both commands specify the executable name inside the container,
and thus creating an internal dependency.

3 Port 58 Spring, Docker,
Docker-
Compose

Dockerized Spring Boot applications usually exhibit multiple configuration options,
which specify the application’s reachable port. Thus, the port is defined at different
places, such as in a Dockerfile and docker-compose.yml.

4 Database Credentials 62 Spring, Docker-
Compose

Multi-container applications often incorporate databases. To access those databases,
credentials are specified at different configuration artifacts, such as in Spring Boot’s
Properties file and in the docker-compose.yml.

5 Configuration Artifact 94 Docker, Maven,
Node.js, Poetry,
TSconfig

Configuration files, such as the pom.xml and package.json are often copied from the
local root directory to the host machine’s file system to build and run the application
in a Docker container, thereby creating a dependency.

pyproject, tsconfig, cypress) to extract only those configu-
ration dependencies that we can cover with our currently
supported plugins. Note that we are not conceptually limited
to these plugins, but consider these as suitable search keys
for finding configuration dependencies, as they often interact
with other technologies in a software project.

To select relevant posts, we first filtered the dataset using
each possible tag pair created from our vocabulary, then
sorted the resulting posts in descending order based on
their score, and finally extracted the top 50 posts for each
technology pair. We focused on the most relevant posts for
each tag pair using the score as metric indicating how much
attention a post has received by the SO community to extract
typical and relevant real-world intra- and cross-technology
configuration dependencies. The number of posts varied
among technology pairs. That is, we obtained 50 posts for
16 pairs, 0 posts for 13 pairs, and for the remaining pairs we
found between one and 50 posts. Overall, we obtained 888
SO posts (i.e., 847 unique posts) for 36 different tag pairs,
which were then manually reviewed by the main author.

Naturally, manually extracting configuration dependen-
cies from SO posts is challenging, because configuration
dependencies are not always obvious and explicitly declared.
To this end, we manually reviewed each post taking all
available information in the posts into account, including
code snippets, figures, answers, and comments, to identify
dependent options. Specifically, we focused on options that
appeared together in the posts with the same value (e.g.,
in code snippets or answers). Moreover, we considered
individual options if the questions, answers, or comments
indicated that other technologies were involved, which
included options with the same value. By using domain
knowledge, we also identified complex options, such as
hidden, nested, or composed options. In all cases, we finally
decided if the configuration options represent real configura-
tion dependencies, and if so, we extracted the configuration
dependency. Unclear configuration dependencies had been
discussed by two authors until an agreement was reached.
Following this methodology, we identified and extracted
relevant dependencies that rely on value equality.

Note that our selection does not include search terms for
configurations, dependencies, or conflicts, since they may
bias our search. Moreover, developers may be unaware that
they have a dependency problem and not add such terms
as tags. This approach even increases our validity, because
if we find posts with configuration dependencies, we can
be certain that these dependencies are relevant to a large
number of developers, as the high score is compared to
any development activity (i.e., any topic post) involving
the corresponding technologies and not just configuration
related.

Results. In total, we found 10 configuration dependencies
that appeared in multiple SO post, indicating that we
have extracted typical real-world configuration dependency
examples. Among the extracted configuration dependencies,
there are three intra- and seven cross-technology dependen-
cies. Our approach detects cross-technology configuration
dependencies by default, but is not conceptually limited to
them. Instead, CFGNET also allows the detection of intra-
technology configuration conflicts, so that we decided to
keep one intra-technology configuration dependency. To
this end, we selected the most common intra- and the four
most common cross-technology configuration dependencies
for the dependency violation injection. We show these five
real-world configuration dependencies extracted from SO in
Table 5. The remaining configuration dependencies can be
found at our supplementary website [10].

6.2 Dependency Violation Injection
We selected five projects from GitHub that have been built
with the technologies involved in the extracted configuration
dependencies such that each project incorporated at least
one of the configuration dependencies extracted from SO.
Specifically, we first filtered GitHub repositories by the
corresponding technologies (i.e., docker, docker-compose,
spring/spring-boot, and maven) and then manually re-
viewed the best matches. Thereby, we looked into the
configuration files of the repositories and selected these
software repositories that incorporated a configuration de-
pendency extracted from SO. We excluded all repositories



10

TABLE 6: Overview of subjects systems, including the number of technologies (|T|), configuration artifacts (|F|), total
options (|O|), and average number of options per artifact (|Ø O|) as well as the results of the dependency violation. The
columns ID, Injected, Detected, and Unexpected show the types of violated dependencies extracted from SO, the total number
of dependency conflicts that we injected, the actually identified conflicts by CFGNET, and the number of additionally
detected conflicts. The columns Detected and Unexpected under Fix show the number of fixes suggested by CFGNET for the
detected and additionally detected conflicts.

Repository
Config. Statistics

ID
Dependency Conflicts Fix Performance (in seconds)

|T| |F| |O| |Ø O| Injected Detected Unexpected Detected Unexpected Construction Detection

spring-boot-blog 3 3 72 24 1, 3 2 2 0 2 0 0.02 0.02
Ward 2 2 55 27.5 5 1 1 0 1 0 0.02 0.02
piggymetrics 5 29 680 23.4 1, 3 4 4 1 4 1 0.32 0.33
netflix-oss-example 4 34 626 18.4 1, 2, 3 5 5 1 5 1 0.21 0.22
taskManagement 4 7 125 17.9 1, 2, 4 3 3 2 3 2 0.03 0.04

that did not incorporate the corresponding technologies and
configuration dependencies. Moreover, we dropped software
repositories that did not represent real software projects. We
stopped our search after we found 5 software projects, so
that the extracted configuration dependencies from SO were
covered at least once. We show our subject systems with
configuration-related statistics in Table 6

We then followed state-of-the-art practice [4], [8], [9] by
purposefully violating one or more existing dependencies
in a local fork of the selected software projects. Technically,
we first applied CFGNET to a software project to initialize
the reference network. Next, we injected the dependency
violations in the software project by randomly changing one
value of the configuration dependencies under test. Finally,
we applied CFGNET again to the software project to create the
modified version of the network, which was then compared
to the reference network to detect dependency conflicts. Note
that we knew the configuration dependencies in each subject
systems, since we manually looked into each project and
selected those that incorporated at least one configuration
dependency extracted from SO.

6.3 Results
We report the results of our dependency violation in Table 6.
As we will explain in more detail next, we detected 19
real-world dependency conflicts, demonstrating CFGNET’s
potential for daily use.

6.3.1 Detected Dependency Conflicts
In all subject systems, we purposefully violated one or more
existing configuration dependencies by changing one of their
values, respectively. This way, we injected a total of 15 known
dependency violations into our five subject systems and
applied CFGNET in order to detect the resulting dependency
conflicts. From the 15 injected dependency conflicts, CFGNET
could detect all of them and provided correct suggestions to
fix them in all cases.

Interestingly, CFGNET additionally detected 4 unexpected
dependency conflicts, for which it also provided correct fixes.
We found two of them when we changed the name of a
specific service to violate the executable name dependency
(ID 1). Specifically, we renamed a certain service in Piggy
Metrics and in Netflix OSS Example and expected to detect
only a single dependency conflict, respectively. However,
we detected one additional dependency conflict in each

subject system, since other options also referred to the service
name. We believe that these two unexpected conflicts are real
dependency conflicts, because when the name of a service
is changed, all other configuration options that refer to the
service name should change as well.

The two remaining conflicts were detected when we
changed the username for a database to violate the database
credentials dependency (ID 4). Here, we renamed the user-
name in Task Management and expected to detect only
one dependency conflict, but we detected a total of three
conflicts for this dependency violation. The problem here is
that the project incorporates different Spring environment
configurations file, since we found configuration files for the
dev environment. Currently, we do not distinguish different
Spring environments, however, we believe that when the
credentials of a database are changed, the current environ-
ment does not matter. Hence, we additionally detected two
dependency conflicts across different environment files that
represent real dependency conflicts. So, interestingly, we
found a security issue with our approach.

6.3.2 Performance
Since CFGNET’s network construction and conflict detection
are intended to be used in Git hooks, it needs to be reasonably
fast. Hence, we measured the construction and conflict
detection time for each software project during the depen-
dency violation. The results in Table 6 show that CFGNET’s
performance in constructing a configuration network and
detecting dependency conflicts is well below half a second,
and thus reasonably fast. Therefore, a developer would get an
immediate response when using our framework for detecting
dependency conflicts, which represents an important aspect
of its practicality.

6.3.3 Summary
In total, we injected 15 known dependency violations into
five subject systems selected from GitHub. All known
dependency violation were reliably detected by CFGNET. In
addition, CFGNET detected four dependency conflicts caused
by changing a certain service name and database credentials.
With this evaluation, we demonstrated CFGNET’s main
application scenario and its potential for daily use. We also
showed how CFGNET helps to prevent possible configuration
dependency conflicts during software development and
maintenance.



11

7 EVALUATION: COMMIT HISTORY

To demonstrate the need to reliably track cross-technology
configuration dependencies, we analyzed the commit history
of 50 repositories selected from GitHub. In doing so, we
simulated a generic application scenario of CFGNET, where
we employed the technology-plugins and a general linker to
detect dependency conflicts.

7.1 Setup
To not bias our evaluation, we selected the top 50 repositories
from GitHub with the most stars (June 2022) that incorpo-
rate at least two of the technologies for which we have
already implemented corresponding technology plugins.
We replaced repositories that could not be analyzed due
to errors caused by third-party libraries and that did not
represent real software systems, for example, collections of
best practices, frameworks, or link hubs. Based on these
criteria, we ensured that we select relevant software systems
that can be fully analyzed and potentially exhibit violations
of cross-technology configuration dependencies in their
commit history.

We then analyzed the commit history of our subject
systems in an automated manner and tracked all detected
dependency conflicts for each commit. Since commit histories
are usually not linear, we cloned each subject system and
applied Git’s filter-branch command1 to the local fork of each
subject system in order to linearize their commit histories.

After the analyses, we sampled 50 Modified Option
Conflicts for each subject systems and reviewed them. If
there were less than 50 conflicts, we reviewed all of them.
Note that we sampled only Modified Option Conflicts and
excluded all other conflict types for three reasons. First,
Modified Option Conflicts are the primary type of conflicts
that CFGNET detects by default. Second, for Modified Option
Conflicts, we were able to manually inspect and reason about
the severeness of the reported conflict. Third, for Missing
Artifact and Missing Option Conflicts, there is no way of telling
whether the removal of artifacts and options was intended.

The review of dependency conflicts encompassed the
following steps: First, one author went through all commits
involving a conflict and checked the change that caused the
conflict as well as the involved configuration options and
values. Thereby, the author used his experience and domain
knowledge to reason about whether the change actually leads
to a configuration conflict. Finally, the author marked the
conflicts accordingly as either clearly yes, no, or borderline case.
As this methodology might be subjective, the second author
reviewed all borderline cases and manually sampled clear
cases for validity checks.

7.2 Results
We report the results of the commit history analyses and
manual review of dependency conflicts in Table 7. We found
dependency conflicts in 39 (78 %) subjects systems, while
32 of them (64 % of all subject systems) contained Modified
Option Conflicts. From each of the 32 subject systems, we
created sample sets for the manual review of the dependency
conflicts. In total, we manually reviewed 883 Modified Option

1. git filter-branch --parent-filter 'cut -f 2,3 -d " "'

Conflicts, annotated 785 (89 %) conflicts with yes, and 98
(11 %) with no. To discuss the reviewed conflicts, we classified
them into different categories based on their rating and the
involved configuration types. We report the categories of
conflicts in Table 8.

7.2.1 Dependency Conflicts
The most reoccurring dependency conflicts were due to
the version number of libraries and configuration files.
Specifically, these conflicts frequently occurred in projects
that incorporated Maven and Node.js. This is not surprising,
as these projects often contain several packages that come
with their own configuration files, in which the versions
of libraries and configuration files are specified. Version
inconsistencies can lead to a wide range of issues, including
compatibility issues, security threats, broken builds, and
maintenance issues [35], [36]. For example, Santolucito et
al. [37] demonstrate that a version inconsistency caused
a CI failure, which resulted in a broken build of the
project. Moreover, these dependency conflicts are related to
a common problem, which is also known as the dependency
hell [38]. Usually, a dependency hell emerges in large and
complex software systems due to a multitude of software
libraries. These libraries introduce their own dependencies
across different configuration artifacts, making it difficult and
time-consuming to adequately set up, manage, and maintain
all the intertwined dependencies. Consequently, keeping
those dependencies consistent is challenging even for experts
due to missing awareness and complexity of configuration
dependencies across the used technology stack.

The second most reoccurring conflicts belong to the
category Unknown, which also represents the category with
most conflicts labeled with no. Taking a closer look at
these conflicts showed that they were mainly caused by
inconsistent Java and NPM version, compiler options, and
base images in pom.xml, package.json, tsconfig.json, and
Dockerfiles. Additionally, we found two dependency con-
flicts caused in the Spring configuration file, involving a
Redis timeout and the Elasticsearch cluster-node option that
points towards the Elasticsearch container. The severity of
these dependency conflicts encompasses a wide range of
issues, such as compatibility, connectivity, compilation, and
maintenance issues. Moreover, conflicts in this category also
reveal an issue of the technology plugins and the equality-
based linker. Here, options without any type information
were linked, and since they did not change consistently,
we found conflicts. This means that a few plugins do not
fully exploit domain knowledge (i.e., type information),
and therefore the equality-based linker solely relied on his
linker heuristic and linked options with the same values.
Considering the distribution of labeled conflicts, it becomes
apparent that incorporating type information significantly
mitigates the problems of the equality-based linker, making
the linker practicable.

Other reoccurring dependency conflicts were caused
by the scripts field in package.json files, since different
package.json files often specified the same scripts and entry
points for a project, representing conflicts in the Command
category. Basically, scripts are a set of commands, including
built-in and custom scripts that are run at various times in
the lifecycle of a project. If these options are not changed



12

TABLE 7: Results of the commit history analyses. The columns MAC, MOC, and ModOC represent Missing Artifact, Missing
Option, and Modified Options Conflicts, respectively.

Name Stars Language
Analysis Statistics Performance Conflict Review

# Commits # Conflicts # MAC # MOC # ModOC Ø Construction (in s) Ø Detection (in ms) Sample yes no

angular 82.0K TypeScript 24105 126 41 57 28 0.2 0.08 28 16 12
animate 74.8K CSS 378 1 0 0 1 0.01 0.01 1 1 0
ant-design 80.7K TypeScript 11256 1 0 0 1 0.06 0.01 1 1 0
atom 58.2K JavaScript 15563 24 3 13 8 0.09 0.19 8 8 0
axios 94.0K JavaScript 947 0 0 0 0 0.02 0.01 0 0 0
Chart 57.3K JavaScript 2594 3 0 3 0 0.05 0.01 0 0 0
code-server 54.1K TypeScript 1632 11 6 3 2 0.14 0.02 2 1 1
core 53.4K Python 41160 2 0 0 2 0.22 0.01 2 2 0
create-react-app 95.5K JavaScript 2631 168 10 30 128 0.07 0.20 50 50 0
deno 83.0K Rust 7223 5 5 0 0 0.03 0.01 0 0 0
developer-roadmap 197.1K TypeScript 953 0 0 0 0 0.02 0.003 0 0 0
django 64.6K Python 30004 0 0 0 0 0.14 0.01 0 0 0
echarts 51.4K TypeScript 3262 0 0 0 0 0.02 0.003 0 0 0
elasticsearch 60.0K Java 20502 66 5 59 2 2.85 0.75 2 2 0
electron 102.1K C++ 11861 18 7 1 10 0.05 0.11 10 2 8
element 52.2K Vue 3097 182 42 10 130 0.05 0.37 50 50 0
fastapi 46.3K Python 2174 2 2 0 0 0.03 0.02 0 0 0
FiraCode 64.4K Clojure 513 0 0 0 0 0.01 0.01 0 0 0
freeCodeCamp 347.6K TypeScript 21148 232 35 82 115 0.74 0.31 50 47 3
gatsby 53.1K JavaScript 18810 8261 80 491 7690 4.77 95.75 50 50 0
go 100.7K Go 49816 0 0 0 0 0.11 0.01 0 0 0
hugo 59.6K Go 6870 0 0 0 0 0.03 0.003 0 0 0
ionic-framework 47.5K TypeScript 9497 344 52 93 199 0.11 0.11 50 46 4
kubernetes 89.4K Go 46764 55 32 12 11 16.19 0.01 11 8 3
mall 59.0K Java 841 89 7 67 15 0.19 1.26 15 13 2
material-ui 79.1K JavaScript 11469 665 27 107 531 1.37 1.01 50 50 0
moby 63.3K Go 16129 1 1 0 0 0.11 0.004 0 0 0
moment 46.6K JavaScript 1661 0 0 0 0 0.02 0.01 0 0 0
nest 47.8K TypeScript 3816 856 62 48 746 0.35 1.05 50 50 0
netdata 59.7K C 9337 3 1 2 0 0.16 0.01 0 0 0
next 88181 JavaScript 11089 2575 220 802 1553 9.47 252.29 50 50 0
node 88.3K JavaScript 33558 3778 664 1311 1803 8.21 43.13 50 47 3
nvm 58.6K Shell 1432 0 0 0 0 0.02 0.01 0 0 0
opencv 62.2K C++ 11224 2 0 0 2 0.11 0.02 2 2 0
protobuf 55.0K C++ 3663 268 11 174 83 0.33 1.23 50 34 16
puppeteer 78.5K TypeScript 2853 58 12 23 23 0.05 0.07 23 21 2
rails 50.9K Ruby 38425 12 0 9 3 0.07 0.02 3 3 0
redux 58.2K TypeScript 1964 0 0 0 0 0.03 0.01 0 0 0
rust 67.7K Rust 35625 58 33 3 22 0.19 0.10 22 18 4
spring-boot 61.7K Java 21042 5899 586 4796 517 33.03 0.464 50 31 19
socket 56.0K TypeScript 1326 26 1 4 21 0.03 0.15 21 20 1
storybook 71.7K TypeScript 11448 9686 228 1591 7867 4.78 60.53 50 50 50
superset 46.6K TypeScript 9654 9 7 2 0 0.09 0.01 0 0 0
svelte 59.5K TypeScript 2608 6 1 0 5 0.10 0.01 5 5 0
transformers 65.3K Python 8386 13 0 10 3 0.04 0.08 3 3 0
TypeScript 81.5K TypeScript 11286 138 19 95 24 1.38 4.22 24 11 13
vscode 133.0K TypeScript 40587 786 45 407 334 3.06 38.73 50 43 7
vue 196.9K TypeScript 3297 243 6 17 220 0.06 0.07 50 50 0
vue-element-admin 76.7K Vue 906 0 0 0 0 0.02 0.004 0 0 0
webpack 61.2K JavaScript 5254 1 1 0 0 0.14 0.10 0 0 0

Total 883 785 98

consistently together, various errors can occur such as build
errors, inconsistent system behavior, and even difficulty in
managing and updating scripts. Since scripts are often used
to automate repetitive tasks, such as running a linter tool
on the source code, executing tests, building the project, the
resulting conflicts are often detected in CI/CD pipelines.

We also found one of the dependency conflicts (ID 4) that
we injected in Section 5. The username and password were
changed for the Spring data source, whereas the same options
were not changed in another configuration artifact, which

can lead to connection problems with the data source. Those
conflicts easily lead to serious problems, such as connection
timeouts, access denied problems, and network-related issues
if the application or container cannot connect to the data
source. This kind of problem were discussed in numerous
SO posts that we reviewed and from which we extracted this
cross-technology dependency, indicating the need to change
these options consistently in all corresponding artifacts. In
general, username and password options are always critical,
since they also may expose security threats.



13

TABLE 8: Classification of dependency conflicts based on
their ratings and the involved configuration types.

Configuration Type
Rating

yes no

Version Number 670 14
Unknown 51 37
Command 26 2
Path 14 22
Name 6 23
License 5 0
URL 4 0
User Name 3 0
Password 3 0
Type 2 0
Language 1 0

Total 785 89

Other less reoccurring dependency conflicts were caused
by URLs, file paths, packaging types, service/module names,
or licenses. These dependency conflicts also vary in their
severity, ranging from crashing to non-crashing errors. For
example, service/modules names have to be changed con-
sistently across all configuration artifacts in multi-module
Maven projects, otherwise the build of the projects will fail.
Moreover, service/module names or packaging types are
often part of composed options, and changing them in an
inconsistent way can cause serious problems, as shown in
our introductory example.

Most conflicts that are labeled with no belong to the
Unknown, Name, and Path categories. During the review
of these conflicts, we noted two issues. First, as already
mentioned above, a few plugins lack domain knowledge,
so that the linker does not always take meaningful type
information into account when creating links. Second, not all
options that are specified in configuration files are necessary
to track, because we found many conflicts caused by changes
to the name or description of configuration files, to relative
file paths, or to placeholder values for version numbers.

These results strongly support our framework-based
approach to track configuration dependencies with tech-
nology plugins by incorporating domain knowledge. These
are the key factor for the success of CFGNET. Specifically,
the implementation of technology plugins has proven to
be important for detecting dependency conflicts, since they
decide which options are added to the network and which are
not. Moreover, technology plugins encode domain knowl-
edge, such as type information for configuration options,
which is used by the equality-based linker. That is, plugins
not only influence how much information a configuration
network contains, but also improve the linking process.
Hence, plugins should be carefully developed and always
incorporate domain knowledge if possible. So, only 10 % of
all reported conflicts are false positives even when using the
most simple linker heuristic.

7.2.2 Number of Detected Dependency Conflicts

Interestingly, the number of detected dependency conflicts,
varies widely from system to system, thereby ranging from 0

to almost 10k detected dependency conflicts. We identified
two reasons why we encountered so many dependency
conflicts in certain subject systems. First, these systems are
primarily implemented in Java, JavaScript, and TypeScript
and incorporate technologies, such as Maven, Node.js, and
TSconfig. Our current implementation already covers these
language-specific technologies, enabling us to easily detect
dependencies between them and other technologies used in a
software system. Conversely, we found significantly fewer or
no dependency conflicts in systems built using programming
languages that lack language-specific technology plugins,
such as Rust, Go, Clojure, or C++. The other reason for the
high number of detected dependency conflicts in certain
systems is in the nature of the detected dependency conflicts.
The majority of detected dependency conflicts arose from
version inconsistencies between libraries and configuration
files. These dependency conflicts primarily occurred in large
and complex subject systems, consisting of multiple submod-
ules, each with its own configuration artifacts. Changing the
version of a library in one module can lead to conflicts with
all other modules that specified this library. Given that we
analyzed large and complex systems, which often comprised
thousands of commits, and that a single change can cause
several dependency conflicts, explains the high number of
detected dependency conflicts in some systems.

7.2.3 Performance
For each subject system, we also measured CFGNET’s perfor-
mance in constructing a network and in detecting conflicts
for each commit that we analyzed during the commit history
analysis. We report the average time needed to construct the
network and to detect conflicts in Table 7. On average, our
results show that CFGNET’s network construction usually
took less than a second and the conflict detection was always
below half a second. However, we also noted 10 outliers for
which the network construction took more than a second.
We found that these subject systems contained dozens and
even hundreds of configuration files per commits, which
were parsed by our plugins. Naturally, parsing such large
amount of configuration files per commit affects CFGNET’s
performance in constructing the corresponding network.
Nevertheless, our results show that CFGNET scales across
software systems that differ in size, programming language,
and domain.

7.2.4 Summary
We found that our current implementation, which includes
nine technology plugins and an equality-based linker, can
find hundreds of potential configuration conflicts in real-
world software projects. The diversity of detected cross-
technology dependency conflicts emphasizes their signif-
icance and the need to reliably track configuration de-
pendencies across the used technology stack to prevent
their violations. Our manually analysis with about 89 %
true positives of varying severity indicates not only the
relevance of our approach for real-world projects, but also
its applicability already in its current state. That is, although
CFGNET is designed for extensibility and incremental accu-
racy improvement, it has already shown promising results.
Moreover, we found that the false positives can be mainly
traced back to the implementation of plugins due to a lack



14

of domain knowledge and tracking of unnecessary options.
This confirms that plugins are the key success factor for our
approach, as they not only determine how much information
a network contains, but also support the linking process by
providing type information for configuration options.

8 DISCUSSION

What is CFGNET’s application scenario? We envision that
CFGNET is primarily used within a Git hook that targets com-
mits to prevent dependency conflicts during the development
and maintenance of software systems. That is, whenever
changes are made, CFGNET checks the changes before the
actual commit gets pushed to the repository and reports an
error if it has detected possible dependency conflicts. So,
developers would get immediate response and can check
the changes again together with their domain knowledge
to fix the dependency conflicts. This way, developers can
proactively prevent possible dependency conflicts and save
time in resolving complex dependency conflicts when using
our framework. Our results show that CFGNET efficiently
detects dependency violations and reports useful information
to fix them, demonstrating its applicability already in its
current state.

Why are technology plugins the key success of our frame-
work? Our results strongly support our framework-based ap-
proach to track configuration dependencies with technology
plugins by incorporating domain knowledge. Plugins specify
not only how much information a configuration network
contains, but also improve the accuracy of the linking process
by making links type-aware. This way, we can go from
a pure value-equality to value-type-equality. This is only
possible if according information is available. Moreover, our
plugin-based approach allows developers or tool vendors to
easily develop and integrate their own technology plugins
into CFGNET. We believe that the ability of CFGNET to
incorporate such diverse solutions as technology plugins
and to perform analyses on them, is a novel strength of our
approach.

Also note that technology plugins affect the accuracy of
our framework, and thus need to be carefully developed.
Specifically, the accuracy of technology plugins partially
depends on their implementation by the corresponding file
parser and the domain knowledge added by the developer.
For this reason, we aimed to select official file parsers or those
that are appreciated by the GitHub community, indicating
that the file parsers have proven to be reliable. We also
tested each implemented technology plugin to ensure their
accuracy in extracting configuration options and their values
and translating them into the network structure.

Naturally, the more plugins there are, the more depen-
dency conflicts can be potentially detected, as the network
includes more nodes that might be related. However, the
number of false positives are not directly linked to the num-
ber of plugins. First, it depends on how many technologies
there are in a project. Second, it depends on whether proper
plugins are applied, containing type information on options,
or only general purpose plugins. The later ones are likely
to cause more false positives as they have only the value
of an option available. So, we would encourage using only
technology-specific plugins. Third, using the equality-based

linker without type information and without a white- or
black-list can substantially increase false positives. This is
why we proposed means to reduce this effect. Basically,
forbidding the most common values (e.g., true, false, 1,
0) had a tremendous positive effect on the reduction of
false positives, and we expect this to play out especially
when more plugins are added. Naturally, as we design the
framework to be extensible, we see further gains in lowering
false positives with heuristic-based linkers. However, —and
this cannot be stressed enough— research on such linkers
requires a data set to begin with. This is what we can provide
for the first time. So, we enable such research with our
configuration network.

Increasing the number of plugins may increase the
construction time of the network. However, the parsing
process can easily be parallelized, effectively decoupling
the number of plugins with parsing time. Only the linking
process needs to be serialized, which is the fastest part of the
network analysis.

How can other linker heuristics be derived and integrated
as plugins into our framework? Integrating a linker is
typically a straightforward task, since our linker interface
clearly defines the requirements (i.e., methods) of the linker.
That is, a linker plugin must first implement the linker
heuristic, then traverse the value nodes, and create links
when the linker criteria is met. The challenging part is, of
course, when to create a link. This is a research on its own
as this requires vast amount of data that is not available in
a suitable form. Linker heuristics can be obtained through
repository mining, static code analysis, or machine learning.
For example, Santolucito et al. [15] applied a more expressive
form of association rule learning (ARL) to mine various rules
within a configuration file. We believe that ARL can also be
employed to mine rules across the used technology stack
of a software project, which can be leveraged by a linker as
criteria to establish links between configuration options.

How do we envision the further development of our
framework? Our vision for the further development of
CFGNET involves a collaborative and transparent effort by
a community of contributors, including developers, tool
vendors, and researchers. We aim to create a framework
similar to popular open-source projects, where contributions
can be made by various actors and shared upon. This is
much like GitHub actions where the community contributes
their actions to support some technologies and use cases. So,
our framework is very similar in this regard. For example, a
product teams could develop plugins to cover technologies
used in their software development process and apply
CFGNET to tackle configuration dependencies introduced
by these technologies. Since the member of product teams,
such as developers and DevOps engineers, regularly work
with various technologies, they already have the necessary
expertise to develop new and maintain existing technology
plugins. So, instead of a single-purpose research tool that has
no maintenance as soon as the research is done, we publicize
the framework and invite the community to build upon it.
At the very least, CFGNET will allow for further research on
this topic by providing a platform to collect and structure
the configuration landscape of modern software projects.



15

What are the challenges to determine the severity of de-
pendency conflicts? Determining the severity of the detected
configuration dependency conflicts is challenging due to
their complexity in terms of how and where they manifest.
Configuration typically happens at different stages, such as
development, testing, deployment, or even in production [1].
Dependency conflicts can thus occur at different stages
of the development and deployment process, which is
one reason why configuration errors are often undetected
until a system goes into production. Moreover, dependency
conflicts can lead to a wide range of issues, including system
failures, performance degradation, inconsistent behavior, or
difficulty in configuring software systems properly. Version
inconsistencies, for instance, can cause compatibility issues,
security threats, broken builds, or difficulty in managing
and updating dependencies [35], [36], [37]. Additionally, the
linearization of the commit histories limits the visibility of
the effects of detected dependency conflicts, as checking the
run of a CI server, if available, is not possible. However, as
illustrated in our introductory example, dependency conflicts
can go undetected by a CI server, and thus passing CI
pipelines may give a false impression. Given these chal-
lenges, we relied on domain knowledge and related work to
determine the severity of the detected configuration conflicts.
Our results indicate that we found relevant configuration
dependency conflicts of varying severity, highlighting their
significance and the need to reliably track configuration
dependencies across the used technology stack to avoid their
violations.

How can detected dependency conflicts be prioritized for
developers? Using CFGNET to analyze the entire commit
history of software projects, as shown in Section 7, may result
in hundreds or even thousands of dependency conflicts.
While the large number of detected dependency conflicts
can be primarily attributed to the size and number of
involved technologies of the analyzed software projects
and the nature of the detected dependency conflicts (cf.
Subsection 7.2.2), it is unlikely that so many dependency
conflicts will be detected if CFGNET is used to proactively
prevent dependency conflicts during software development
and maintenance. In cases when numerous dependency
conflicts are detected, we can resort to prioritizing the
conflicts. The idea involves a ranking of all conflicts based
on specific heuristics. One heuristic can be derived from the
frequency of how often the affected configuration artifacts
have been changed in the past, since frequently changed
configuration artifacts are more likely to lead to dependency
problems. Another heuristic may be based on the effort
required to resolve a dependency conflict in terms of how
many options are involved and have to be changed to fix
the conflict. For example, resolving version inconsistencies
in multi-module software projects often requires changing
several options encoded in configuration artifacts of different
modules, which can be tedious and time-consuming. Also,
this points to dependency conflicts that may be less severe
as backward compatibility often ensures that the system is
still working.

In addition, grouping the detected dependency conflicts
into certain categories, can help developers in evaluating
the importance and severity of the detected dependency

conflicts. This grouping can be realized by the type of the
dependency conflicts, similar to what we already did in the
commit history analysis, or by the heuristics used for ranking
the dependency conflicts.

What are the limitations of CFGNET? A first limitation of
our framework comes from linking configuration options
based the equality of their values, currently restricting
CFGNET to a specific form of configuration dependencies.
Moreover, linking configuration options based on value
equality bears the risk of creating false positives, since not all
configuration options with the same value have to depend on
each other. To mitigate this risk, we added two mechanism
to support the equality-based linker to create meaningful
links. First, we extended the linker criterion by incorporating
domain knowledge if available to prevent linking options
whose types are different. Second, we added global and
local blacklists, which allow developers to adapt the linking
algorithm to limit links of configuration values that bear the
risk of being involved in too many links. Both mechanisms
already reduced the number of false positives to a rate of
practicability.

Another limitation concerns unique option names, which
are required by CFGNET to find the correct nodes in the
network via tracing. This works well for regular config-
uration files that rely on key-value pairs, but not always
for configuration files that behave like scripts, such as
Dockerfiles. For example, Dockerfiles often specify multiple
COPY commands that are run one after another when
the container is deployed. Those commands are different
configurations and do not even have to be in the same order,
which makes it challenging to track them without additional
information.

Moreover, our approach currently cannot reliably handle
all cases of repetitive configuration options and options
with multiple values, as multiple definitions of the same
configuration option in a single file make it challenging to
create unique option names. However, our framework can
already model nested structures, such that nested regions
are allowed to define equally named options. This way, we
already represent specializations of configuration options.
Another way to deal with repetitive options would be to
consider the absolute positioning of options in a configura-
tion file by considering their line number in the file. Then,
the linker would have to be configured to, for example,
match the first occurrence of the option, or to match all
occurrences. Hence, our framework can already handle inner
dependencies and can be extended to model more complex
structures.

9 THREATS TO VALIDITY

There are primarily two external threats that arise from the
selection of SO dependencies and subjects systems for both
evaluations. We aim to increase external validity first by
extracting real-world configuration dependencies reported
by developers of SO. By selecting only those configuration
dependencies that occurred in highly scored posts and were
brought up in several posts, we evaluate our framework in
a real setting. Second, rather than building toy projects to
simulate dependency conflicts of the extracted dependencies,
we selected five real-world projects from GitHub for the



16

dependency violation that involve the technologies of the
extracted configuration dependencies. Finally, we selected
50 software repositories for the commit history evaluation,
which vary in size, language, and domain, to ensure that our
results can be generalized to other software projects.

A threat to internal validity depends on how the technol-
ogy plugins parse configuration artifacts and construct the
configuration network. To mitigate this threat, we studied
the technologies, created unit tests for the corresponding
technology plugins as well as relied on third-party tools
to parse configuration files if possible. It is important to
note that we first developed all technology plugins and only
afterwards extracted dependency conflicts from SO posts.
This way, we avoid bias in the implementation and mitigate
the threat of construct validity.

The commit history evaluation contained the manual
review of conflicts, which may be subjective and introduce
researcher bias. Here, one author of the paper went through
all commits involving a conflict, used his experience and
domain knowledge to reason about the severeness of the
conflicts, and finally marked the conflicts either clearly yes
or no, and borderline. We mitigated this threat by having
two authors reviewing unclear decisions. Moreover, both
authors have experience with configuration artifacts and
related technologies. On top of that, we provide all material
online.

10 CONCLUSION

Modern software projects use various technologies and
tools that have to be configured to work together. This
often means that tools and frameworks have dependent
configurations, possibly unaware to an individual developer.
We propose CFGNET to model dependent configurations,
enabling the tracing and detection of dependency violations.
This allows us to inform developers when they change a
configuration without changing dependent configurations
and even suggest possible fixes. We designed CFGNET as
a framework to enable tailor-made solutions for different
technologies and dependency detection techniques in a
common data structure by leveraging the plugin-based
architecture. In a literature study, we found that the most
common form of dependencies is the equality of values of
different options. To this end, we developed an equality-
based linker to determine dependent options across different
artifacts. We also implemented nine technology plugins to
demonstrate CFGNET’s extensibility

To evaluate CFGNET, we collected five real-world con-
figuration dependencies from Stack Overflow and violated
these dependencies in five software projects. Our framework
detected not only the injected dependency conflicts but also
found four additional ones, demonstrating its practicality.
Moreover, we analyzed the commit history of 50 repositories
and found conflicts in about two thirds of these repositories,
demonstrating the need to reliably track cross-technology
configuration dependencies and prevent their misconfigura-
tion. Finally, we manually reviewed 883 conflicts and showed
the relevance and applicability of our approach for real-word
software projects.

ACKNOWLEDGEMENT

The work of the authors has been supported by the Federal
Ministry of Education and Research of Germany and by
the Sächsische Staatsministerium für Wissenschaft Kultur
und Tourismus in the program Center of Excellence for AI-
research ”Center for Scalable Data Analytics and Artificial
Intelligence Dresden/Leipzig”, project identification number:
ScaDS.AI, and by the BMBF project Agile-AI (01IS19059B).
Siegmund’s work has been funded by the German Research
Foundation (SI 2171/2-2).

REFERENCES

[1] N. Siegmund, N. Ruckel, and J. Siegmund, “Dimensions of
software configuration: on the configuration context in modern
software development,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 338–349.
[Online]. Available: https://doi.org/10.1145/3368089.3409675

[2] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in
commercial and open source systems,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, ser. SOSP ’11.
New York, NY, USA: ACM, 2011, pp. 159–172.

[3] T. Xu and Y. Zhou, “Systems approaches to tackling configuration
errors: A survey,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–41, Jul.
2015.

[4] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding
and discovering software configuration dependencies in cloud and
datacenter systems,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 362–374.
[Online]. Available: https://doi.org/10.1145/3368089.3409727

[5] M. Sayagh, N. Kerzazi, and B. Adams, “On cross-stack
configuration errors,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 255–265. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.31

[6] F. Hassan, R. Rodriguez, and X. Wang, “RUDSEA: Recommending
updates of dockerfiles via software environment analysis,” in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2018. New York, NY,
USA: Association for Computing Machinery, 2018, pp. 796–801.
[Online]. Available: https://doi.org/10.1145/3238147.3240470

[7] S. Simon, N. Ruckel, and N. Sigemund, “Cfgnet: A framework
for tracking equality-based configuration dependencies across a
software project,” https://github.com/AI-4-SE/CfgNet, 2023.

[8] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou,
and S. Pasupathy, “Do not blame users for misconfigurations,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, ser. SOSP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 244–259. [Online]. Available:
https://doi.org/10.1145/2517349.2522727

[9] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure damage,”
in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). Savannah, GA: USENIX Association,
Nov. 2016, pp. 619–634.

[10] S. Simon, N. Ruckel, and N. Siegmund, “Cfgnet: A framework
for tracking configuration dependencies across a software project
(supplementary website),” https://github.com/AI-4-SE/CfgNet-
A-Framework-for-Tracking-Equality-Based-Configuration-
Dependencies-Across-a-Software-Project, 2023.

[11] M. Attariyan and J. Flinn, “Automating configuration
troubleshooting with dynamic information flow analysis,” in 9th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 10). Vancouver, BC: USENIX Association, Oct. 2010.
[Online]. Available: https://www.usenix.org/conference/osdi10/
automating-configuration-troubleshooting-dynamic-information-
flow-analysis

https://doi.org/10.1145/3368089.3409675
https://doi.org/10.1145/3368089.3409727
https://doi.org/10.1109/ICSE.2017.31
https://doi.org/10.1145/3238147.3240470
https://github.com/AI-4-SE/CfgNet
https://doi.org/10.1145/2517349.2522727
https://github.com/AI-4-SE/CfgNet-A-Framework-for-Tracking-Equality-Based-Configuration-Dependencies-Across-a-Software-Project
https://github.com/AI-4-SE/CfgNet-A-Framework-for-Tracking-Equality-Based-Configuration-Dependencies-Across-a-Software-Project
https://github.com/AI-4-SE/CfgNet-A-Framework-for-Tracking-Equality-Based-Configuration-Dependencies-Across-a-Software-Project
https://www.usenix.org/conference/osdi10/automating-configuration-troubleshooting-dynamic-information-flow-analysis
https://www.usenix.org/conference/osdi10/automating-configuration-troubleshooting-dynamic-information-flow-analysis
https://www.usenix.org/conference/osdi10/automating-configuration-troubleshooting-dynamic-information-flow-analysis


17

[12] A. Rabkin and R. Katz, “Precomputing possible configuration
error diagnoses,” in 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), ser. ASE ’11,
IEEE. USA: IEEE Computer Society, 2011, pp. 193–202. [Online].
Available: https://doi.org/10.1109/ASE.2011.6100053

[13] S. Zhang, “Confdiagnoser: An automated configuration error diag-
nosis tool for java software,” in 2013 35th International Conference
on Software Engineering (ICSE), ser. ICSE ’13, IEEE. San Francisco,
CA, USA: IEEE Press, 2013, pp. 1438–1440.

[14] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic automated
language learning for configuration files,” in Proceedings of the
28th International Conference on Computer Aided Verification, Part II.
Toronto, ON, Canada: Springer, 2016, pp. 80–87.

[15] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac,
“Synthesizing configuration file specifications with association rule
learning,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, Oct. 2017.

[16] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “Encore: Exploiting system environment and correlation
information for misconfiguration detection,” in Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’14. New York, NY,
USA: Association for Computing Machinery, 2014, pp. 687–700.

[17] F. Behrang, M. B. Cohen, and A. Orso, “Users beware: Preference
inconsistencies ahead,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: Association for Computing Machinery, 2015, pp.
295–306.

[18] J. Toman and D. Grossman, “Staccato: A bug finder for dynamic
configuration updates,” in 30th European Conference on Object-
Oriented Programming (ECOOP 2016), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 56. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 1–25.

[19] V. Ramachandran, M. Gupta, M. Sethi, and S. R. Chowdhury,
“Determining configuration parameter dependencies via analysis
of configuration data from multi-tiered enterprise applications,”
in Proceedings of the 6th international conference on Autonomic
computing, ser. ICAC ’09. New York, NY, USA: Association for
Computing Machinery, 2009, pp. 169–178. [Online]. Available:
https://doi.org/10.1145/1555228.1555269

[20] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time
configuration options,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
’14. New York, NY, USA: ACM, 2014, pp. 445–456. [Online].
Available: http://doi.acm.org/10.1145/2642937.2643001

[21] C. A. Metcalf, F. Fowze, T. Yavuz, and J. Fortes, “Extracting
configuration parameter interactions using static analysis,” in 2016
IEEE 24th International Conference on Program Comprehension (ICPC).
Los Alamitos, CA, USA: IEEE Computer Society, May 2016, pp.
1–4.

[22] X. Liao, S. Zhou, S. Li, Z. Jia, X. Liu, and H. He, “Do you really
know how to configure your software? configuration constraints
in source code may help,” IEEE Transactions on Reliability, vol. 67,
no. 3, pp. 832–846, 2018.

[23] T. Mahmud, D. Zhang, O. R. Gatla, and M. Zheng, “Understanding
configuration dependencies of file systems,” in Proceedings of the
14th ACM Workshop on Hot Topics in Storage and File Systems, 2022,
pp. 1–8.

[24] B. Kitchenham and S. M. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” 2007.

[25] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process
within the software engineering domain,” Journal of systems and
software, vol. 80, no. 4, pp. 571–583, 2007.

[26] J. Cohen, “A coefficient of agreement for nominal scales,” Educa-
tional and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[27] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in Proceedings
of the 18th international conference on evaluation and assessment in
software engineering, 2014, pp. 1–10.

[28] R. Bhagwan, S. Mehta, A. Radhakrishna, and S. Garg, “Learning
patterns in configuration,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2021,
pp. 817–828.

[29] W. Chen, H. Wu, J. Wei, H. Zhong, and T. Huang, “Determine
configuration entry correlations for web application systems,” in
2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), vol. 1. IEEE, 2016, pp. 42–52.

[30] W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest:
Generating comprehensive misconfiguration for system reaction
ability evaluation,” in Proceedings of the 21st International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE’17.
New York, NY, USA: Association for Computing Machinery, 2017,
p. 88–97.

[31] O. Tuncer, A. Byrne, N. Bila, S. Duri, C. Isci, and A. K. Coskun,
“Confex: a framework for automating text-based software configu-
ration analysis in the cloud,” arXiv preprint arXiv:2008.08656, 2020.

[32] I. Stack Exchange, “Stack Exchange Data Dump,” Jun. 2021.
[Online]. Available: https://archive.org/details/stackexchange

[33] M. Bagherzadeh and R. Khatchadourian, “Going big: a large-scale
study on what big data developers ask,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2019. New York, NY, USA: Association for Computing
Machinery, 2019, pp. 432–442.

[34] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A compre-
hensive study on challenges in deploying deep learning based
software,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 750–762.

[35] A. J. Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N. Tsantalis,
“Dependency smells in javascript projects,” IEEE Transactions on
Software Engineering, vol. 48, no. 10, pp. 3790–3807, 2021.

[36] J. Dietrich, D. Pearce, J. Stringer, A. Tahir, and K. Blincoe, “Depen-
dency versioning in the wild,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
349–359.

[37] M. Santolucito, J. Zhang, E. Zhai, and R. Piskac, “Statically
verifying continuous integration configurations,” arXiv preprint
arXiv:1805.04473, 2018.

[38] X. Chen, R. Abdalkareem, S. Mujahid, E. Shihab, and X. Xia,
“Helping or not helping? why and how trivial packages impact the
npm ecosystem,” Empirical Software Engineering, vol. 26, no. 2, pp.
1–24, 2021.

Sebastian Simon is a Ph.D. student and a research assistant at the
Chair of Software Systems, Leipzig University, Leipzig, Germany. His
research interests include configurable software systems, configuration
dependencies, and the configuration of machine learning projects and
experiments. Simon received his B.Sc. in 2018 and M.Sc. in 2020
from the Otto-von-Guericke University of Magdeburg. Contact him at
sebastian.simon@informatik.uni-leipzig.de.

Nicolai Ruckel is a software developer at Secunet. He received his
B.Sc. in 2017 and his M.Sc. in 2018 from Bauhaus-Universität Weimar.
Contact him at nicolai.ruckel@posteo.de.

Prof. Dr. Norbert Siegmund holds the Chair of Software Systems
at Leipzig University, Germany. Prof. Siegmund received his PhD with
distinction in 2012 from the University of Magdeburg. His research aims
at the automation of software engineering by combining methods from
software analysis and machine learning. His special interests include
configurable software systems, performance, energy optimization, and
SE4AI. Contact him at norbert.siegmund@uni-leipzig.de.

https://doi.org/10.1109/ASE.2011.6100053
https://doi.org/10.1145/1555228.1555269
http://doi.acm.org/10.1145/2642937.2643001
https://archive.org/details/stackexchange

	Introduction
	State of the Art
	Diagnosis of Configuration Errors
	Detection of Configuration Errors
	Detection of Configuration Dependencies

	Constraints and Dependencies
	Methodology
	Results

	Configuration Networks
	Architecture
	Plugin Manager
	Linker Manager
	Conflict Detector

	Evaluation: Dependency Violation
	Stack Overflow Analysis
	Dependency Violation Injection
	Results
	Detected Dependency Conflicts
	Performance
	Summary


	Evaluation: Commit History
	Setup
	Results
	Dependency Conflicts
	Number of Detected Dependency Conflicts
	Performance
	Summary


	Discussion
	Threats to Validity
	Conclusion
	References
	Biographies
	Sebastian Simon
	Nicolai Ruckel
	Prof. Dr. Norbert Siegmund


