
Exploring Hyperparameter Usage and Tuning
in Machine Learning Research

Sebastian Simon∗, Nikolay Kolyada†, Christopher Akiki‡, Martin Potthast‡, Benno Stein†, Norbert Siegmund‡
∗Leipzig University

†Bauhaus-University Weimar
‡Leipzig University, ScaDS.AI Dresden/Leipzig

Abstract—The success of machine learning (ML) models
depends on careful experimentation and optimization of their
hyperparameters. Tuning can affect the reliability and accuracy of
a trained model and is the subject of ongoing research. However,
little is known on whether and how hyperparameters are used and
optimized in research practice. This lack of knowledge not only
limits the adoption of best practices for tuning in research, but
also affects the reproducibility of published results. Our research
systematically analyzes the use and tuning of hyperparameters
in ML publications. For this, we analyze 2000 code repositories
and their associated research papers from Papers with Code. We
compare the use and tuning of hyperparameters of three widely
used ML libraries: scikit-learn, TensorFlow, and PyTorch. Our
results show that the most of the available hyperparameters remain
untouched, and those that have been changed use constant values.
In particular, there is a significant difference between tuning
hyperparameters and the reporting about it in the corresponding
research papers. Our results suggest that there is a need for
improved research and reporting practices when using ML
methods to improve the reproducibility of published results.

Index Terms—Hyperparameter, Hyperparameter Tuning, Con-
figuration Settings

I. INTRODUCTION

Machine learning (ML) is a success story in many fields,
such as healthcare, finance, and the automotive industry [1].
An important enabler for this success is the highly experiment-
driven development of ML models. Experiments evaluate criti-
cal design decisions, such as alternative modeling techniques,
different ML configurations, and even different data slices. The
goal of experimentation is to explore the search space of a
family of ML algorithms and their hyperparameters to obtain
an ML model that achieves the desired accuracy, reliability,
fairness, and robustness.

Experimental settings and hyperparameters play an important
role in finding the best possible ML model and learning setup.
While ML models can be highly sensitive to experimental
settings, such as random seeds and train-test data slices,
optimizing their hyperparameters often affects the accuracy,
learning effort, and generalizability to the point where a model
with initially poor performance may turn out to be state of
the art (SOTA). To quantify the importance of hyperparameter
tuning in ML, we counted relevant1 publications from DBLP

1To identify relevant papers, we considered all titles with the keyword “hy-
perparameters” combined with either “importance,” “tuning,” or “optimization.”
This was followed by a manual title check to exclude false positives. Papers
on hyperparameter tuning whose authors did not indicate this fact in this way
were disregarded.

Fig. 1: Number of papers indexed in the dblp computer science
bibliography between 2015 and 2021 containing the title
keywords: hyperparameter importance, hyperparameter tuning,
and hyperparameter optimization, plotted against reported
hyperparameter (HP) tuning and stated hyperparameter values
in research papers.

from 2015 to 2022 and plotted their growth per year in Figure 1.
We observe a significant increase in publications with a seven-
fold increase in the observation period. We interpret this growth
as a strong indicator of the practical importance of this subject.

Surprisingly, despite this extensive research, little is known
on whether and how hyperparameters are actually used and
optimized in research practice, and what methods are used. This
is striking given the importance of tuning and what we could
learn by deriving best practices or analyzing divergent commu-
nity standards. This information alone would already provide
new and important insights into the ML community. When
combined with information from the publications themselves,
even more insight into the behavior of the community can be
gained. With this work, we take the first step to filling this
gap by comparing whether hyperparameters are changed in a
paper’s associated code and what has been reported about them.
We further track reporting differences among ML disciplines
and raise awareness of this issue. This is crucial for the
reproducibility of ML approaches: not knowing whether or
which hyperparameters were optimized in which way makes it

difficult or impossible to reproduce a result [2], [3].
We analyze the state of hyperparameter usage and tuning

in ML research in 2000 ML code repositories and associated
research papers from Papers with Code. For these repositories,
we analyze the use of hyperparameters in the APIs of
three widely used ML libraries—scikit-learn, TensorFlow, and
PyTorch. Specifically, we use static code-analysis techniques,
such as control and data flow analysis, to determine which
ML methods2 are most commonly used and which of them
have custom hyperparameter settings. We supplement this
information with manually extracted information from a
repository’s associated research paper. This allows us to identify
community practices and shed light on reporting standards for
tuning, which can be a future way for assessing the robustness
of an ML model and the reproducibility of the results obtained.
To guide the analysis of this data, we explore and answer the
following research questions:

• RQ1: Which, how, and to what extent are ML methods
configured with respect to their hyperparameter settings?

• RQ2: How are hyperparameter settings reported in the
accompanied papers?

We find that, on average, only a few hyperparameters are
set, while the majority of available ones remain untouched.
Therefore, most hyperparameters retain their default values
when an ML method is called. This can mean two things: First,
the default values are already carefully chosen or theoretically
derived and work in most use cases. Second, researchers do not
tune them, even though this could improve their results. The
former is likely not unanimously true for all methods, or else it
is surprising that research on hyperparameter tuning is growing
so rapidly (see Figure 1). However, Figure 1 also shows that
the majority of our analyzed papers do not report tuning (about
75 % across all years) and only half of the papers state the used
hyperparameters. In other words: Why produce so many papers
on the subject when the default values are already sufficient? In
the second case, the reasons for not tuning an ML method need
to be identified. Possible explanations may include lack of an
appropriate experimental setup, limited knowledge of the effects
of certain hyperparameters, time pressure, or knowledge gaps.
In summary, there is a striking difference between research on
and research with hyperparameter tuning in the ML community.
Thus, our results are an important contribution to the critical
discussion of research practices in this area.

In summary, we make the following contributions:

• An overview of the literature and a domain analysis in
terms of reporting practices on hyperparameter tuning
(Section II).

• A large dataset that includes 2000 papers and their
associated code from Papers with Code from various
ML disciplines, as well as methodology for the (manual)
labels indicative of tuning (Section III).

2For simplicity, we refer to the ML classes provided by the ML libraries as
“ML methods” in the following.

• A comprehensive analysis of the use of hyperparameters in
ML code repositories using static code-analysis techniques
(Section IV).

To ensure reproducibility, all data and code are published
alongside this paper.3

II. BACKGROUND AND STATE OF THE ART

In this section, we first describe the selection of ML libraries
and give an overview of typical parameters of ML algorithms.
We then briefly describe approaches for hyperparameter tuning
and finally present related work on the importance of hyperpa-
rameters.

A. ML Libraries

In this study, we target ML methods and their hyperparameter
settings in the APIs of three major and widely used ML
libraries, namely scikit-learn, TensorFlow, and PyTorch. We
chose these ML libraries for two reasons: First, we opt for
open-source libraries, such that we can employ static code
analysis to identify hyperparameter usage patterns. Second, we
aim to select prominent and widely-used libraries to have a
substantial and externally valid data source available for an
analysis. According to Kaggle’s recent survey 4 on the state
of data science and machine learning reveals that scikit-learn,
TensorFlow, and PyTorch are among the most popular ML
libraries used by data scientists.

Scikit-learn is a high-level library and provides many off-
the-shelf and ready to use ML methods for supervised and
unsupervised problems, such as linear regression, random
forests (RF), and support vector machines (SVM) [4]. In
addition to classifier and regressor methods, scikit-learn also
incorporates many other algorithms that can be used, for
example, for data processing, feature extraction, and even
hyperparameter tuning. Scikit-learn has been developed since
2007 and is almost exclusively written in Python [5]. By
contrast, TensorFlow and PyTorch are competitors in the field
of deep learning (DL) and neural networks. While TensorFlow
was originally developed by Google and became an open-source
library in 2015 [5], PyTorch was developed by Facebook and
open-sourced on GitHub in 2017 [6]. TensorFlow and PyTorch
are low-level libraries that allow for building ML models by
using a sets of building blocks. Both libraries, enable the
implementation of DL architectures and algorithms.

B. Types of Parameters

In the field of ML, different types of parameters are
used. Those can be divided into experimental settings, model
parameters, and hyperparameters. Experimental settings, such
as seeds for random values or learning-validation split ratios
of the dataset, cover a wide range of parameters to steer the
execution of experiments and make them reproducible. Model
parameters and hyperparameters are configuration options of
an ML method (or algorithm) and the resulting ML model.
Specifically, a model parameter, such as the weight of neuron

3Supplementary Website: https://zenodo.org/record/7745740
4https://www.kaggle.com/kaggle-survey-2022

https://zenodo.org/record/7745740
https://www.kaggle.com/kaggle-survey-2022

connections in a neural network, is an internal value of the ML
model that is not set manually by an ML engineer, but is learned
or estimated from data during training [7]. A hyperparameter,
on the other hand, represents a configuration option that can
be manually specified by an ML engineer to steer the learning
process [8], thereby determining the values of model parameters
that a model learns during the learning phase [9]. Typical
hyperparameters are, for instance, the regularization parameter
C in SVM, the learning rate in optimization algorithms, or the
number of neurons and hidden layers in neural networks.

C. Hyperparameter Tuning

Different ML methods have different kinds of hyperpa-
rameters. The selection of these methods and their config-
uration settings strongly depend on the modality, domain
and available training data [10], [11]. When developing ML
models, ML engineers typically begin by selecting an ML
algorithm applicable for the problem and data at hand, and
then manually specify its hyperparameter values. The simplest
way to configure hyperparameters is to keep their default values,
which are usually provided by the ML library. However, ML
engineers often tune hyperparameters to find the best set of
hyperparameter values that result in an ML model with a
desired accuracy. To this end, ML engineers define a search
space (i.e., the set of hyperparameters and what value ranges
to consider) and select the search heuristic used to find the
best hyperparameter values in the search space [12].

Many approaches have been proposed to optimize hy-
perparameters, such as manual tuning [13], grid and ran-
dom search [14], Bayesian optimization [15]–[18], meta-
learning [19]–[21], and bandit-based method [22]. When
applied properly, they often result in a significant performance
gain for the resulting ML model [23]. However, hyperparameter
tuning is generally a computationally expensive task [21], which
is why ML engineers may often keep default values or only
tune specific hyperparameters.

D. Hyperparameter Importance

The importance of hyperparameters and their tuning has been
addressed in several studies. For example, Mantovani et al. [24]
developed a meta learning-based recommendation system to
predict whether optimization techniques lead to a performance
gain of ML models compared to the performance of ML models
obtained when hyperparameters are left at their default values.
The authors compared the performance of ML models induced
by SVM on 143 datasets against the default values provided by
ML libraries, showing that they can accurately predict when
optimization techniques should be used instead of default values.
Lavesson and Davidsson [25] systematically compared four ML
methods to investigate algorithm configurations on classifier
performance. Interestingly, they found that it is more important
to tune the hyperparameters of an ML method than to choose
a specific ML method. Moreover, they support the assertion
that some ML methods are more robust than others regarding
their hyperparameter settings. Weerts et al. [12] propose a
methodology based on non-inferiority test and tuning risk

to determine which hyperparameters are important to tune.
Since their approach relies on the notion of default values,
they also define reasonable default values. They applied their
approach on 59 different datasets from OpenML, focusing on
RF and SVM. Interestingly, they found that leaving certain
hyperparameters at their computed default values is non-inferior
to tuning them. Moreover, in some cases, the calculated default
values even outperformed the tuned hyperparameter values.
Probst et al. [26] studied the tunability of hyperparameters
represented by the performance gain obtained when tuning the
hyperparameters. To this end, they investigated six common
ML methods (i.e., elastic net, decision tree, k-nearest neighbors,
SVM, RF, gradient boosting) on 38 OpenML datasets to
assess the tunability of their hyperparameters. Their results
yield default values for hyperparameters and enable users to
determine the importance of tuning a hyperparameter.

By contrast to these studies, researchers have also addressed
the importance of hyperparameters. Specifically, they aimed
to identify hyperparameters that are important to optimize. To
this end, many techniques have been developed to assess the
importance of hyperparameter, such as forward selection [27],
ablation analysis [28], [29], and functional analysis of variance
(ANOVA) [30]–[32].

And yet, while all of the aforementioned studies contribute
valuable techniques to gain insights about the importance of
hyperparameters, we do not know how they are actually used
and tuned in ML research. For this reason, we complement the
above studies in the following aspects: first, we analyze the
usage of hyperparameters of three popular ML libraries in 2000
code repositories to identify how hyperparameters are actually
used. Second, we analyze the research papers of the code
repositories with respect to tuning. Finally, we superimpose
the information extracted from the code repositories and their
papers to shed light on experimentation and reporting practices
with respect to hyperparameter usage and tuning.

III. METHODOLOGY

To systematically answer our research questions (see Sec-
tion I), we empirically studied hyperparameter usage and tuning
in ML research. We collected a dataset of 2000 randomly
selected code repositories with their respective research papers
from Papers with Code. We analyzed the repositories using
static code-analysis to identify which ML methods are mostly
used and how their hyperparameters are set. We also analyzed
the code repositories accompanied research papers to shed light
on hyperparameter tuning in ML research. Our empirical study
follows the methodology shown in Figure 2 as described next.

A. Project Selection

For our code repository analysis, we needed suitable code
repositories that are accompanied with research papers and
incorporate the ML libraries of interest. To this end, we targeted
the Papers with Code corpus5, since it aims at creating an open
source resource for researchers and practitioners to facilitate

5https://paperswithcode.com/

Code Repository Analysis

API Scraping
 of scikit learn,
Tensorflow and

Pytorch

2000 ML Code
Repositories

and Research Papers

Dataset

Extracting ML
Methods

using AST and API
data

API Data

Control- and
Data-Flow
Analysis

Research Paper Analysis

Project Selection

Selection
Criteria

Papers With Code

Statistics about
ML Methods,

Parameter Settings,
and HP Tuning

Results

Labeled

PapersCreating
Keywords

Deriving
ML Fields

Keyword
Search

Annotating
Papers

Measuring
Agreement

Fig. 2: Methodology of analyzing ML code repositories and associated research papers from the Papers with Code corpus.

discovery and comparison in the field of ML. It is one of the
largest platforms that collects and provides ML papers, code,
and data. In addition to papers, the corpus also provides a list
of repositories that link to the paper, including the official or
third-party implementations of the publication, all of which
constitutes an ideal data source for our study.

a) Code Repository Selection: In October 2021, the
Papers with Code corpus indexed about 63,517 papers. For
these papers, we processed the list of repositories and down-
loaded about 86,053 HEAD revision of repositories hosted
on GitHub as well additional metadata on them. Due to
the enormous number of code repositories, we selected a
representative sample set of 2000 code repositories. Since we
aimed to systematically gather a dataset of code repositories,
we established criteria for the inclusion of code repositories as
follows. A code repository must: (1) be accessible on GitHub;
(2) incorporate at least one of the ML libraries of interest; (3) be
written syntactically correct in Python 3; (4) be associated with
a research paper.

The first criterion limits the scope of code repositories
to those accessible on GitHub. Since the Papers with Code
corpus contains papers and the corresponding code repositories
published between 2009 and 2021, it may happen that some
code repositories have been removed. The second criterion
ensures that the ML code repositories use at least one of
the target ML libraries. To identify code repositories that
incorporate at least one of the ML libraries, we checked the
import statements in each Python file to see if one of the
ML libraries is imported. The third criterion had a technical
background. Since the Python AST 6 library (Version 3.10.4)
that we used in combination with a control- and data-flow
analysis to analyze the code repositories is not compatible with
Python 2.x, we limit our selection to code repositories that
are syntactically correct written in Python 3. Finally, a code
repository must be associated with a research paper, as we aim
to analyze the corresponding research paper to compare the
tuning activities with the actual code.

We randomly selected code repositories from the Papers
with Code corpus and checked them against our guidelines

6https://docs.python.org/3/library/ast.html

for inclusion. We stopped the selection after we found
2000 repositories—alongside their corresponding papers—that
met all of our criteria.

B. Code Repository Analysis

The analysis of code repositories consists of two steps:
scraping the APIs of scikit-learn, TensorFlow, and PyTorch to
extract the current state of API calls and their configuration
settings, and extracting ML methods and their hyperparameter
settings based on the scraped API data in combination with a
control- and data-flow analysis.

a) API Scraping: To reliably locate and extract ML
methods within the source code, we first needed a current
overview about all existing ML methods and their configuration
settings that are offered by the API of an ML library. To this end,
we scraped the API of each targeted library, thereby extracting
each possible call and its configuration settings, including all its
classes and methods. Thus, we obtained an up-to-date overview
of existing methods provided by scikit-learn, TensorFlow, and
PyTorch. In Table I, we show the number of scraped API calls
scikit-learn, TensorFlow, and PyTorch. The scraped API data
builds the basis for locating and extracting ML methods and
their hyperparameter settings within the source code.

TABLE I: Number of scraped API calls (i.e., all classes) and
corresponding parameters for specific versions of scikit learn,
Tensorflow, and Pytorch.

ML library Version API Calls Params

Scikit Learn 1.1.1 262 1866
Tensorflow 2.9.1 2273 11657
Pytorch 1.12 384 1288

b) Locating and Extracting ML methods: To automati-
cally locate and extract ML methods and their configuration
settings within source-code files, we transferred the code to
the Python abstract syntax tree (AST) 7 and combined with the
the scraped API data. Specifically, we found ML methods by
checking the AST of the corresponding source-code file against

7https://docs.python.org/3/library/ast.html

the scraped API data. Once we found an AST object with the
same name as a ML method in the API data, we extracted the
corresponding ML method with its configuration settings from
the documentation . Using the AST objects, we extracted the
configuration settings for each ML method actually used in
the source-code of each repository. Our AST analysis relies
on pattern matching that bears the risk of finding other AST
objects with the same name as an API call (e.g., call to user
defined methods), but not representing an ML method of one of
our three ML libraries. For this reason, we additionally checked
all imports in the corresponding Python file to ensure that the
AST object actually references an ML library of interest.

c) Control- and Data-Flow Analysis: When implementing
ML models, it is quite common to define variables that
store specific configuration values. Usually, those variables
are defined before the ML method is initialized and later
passed to the ML method when the method is being called. In
these cases, locating and extracting the concrete configuration
values is limited, since we do not know the actual value of
the variables that are passed to the ML method. To this end,
we additionally performed a control- and data-flow analysis in
order to identify all possible values of a variable that is passed
to a hyperparameter of an ML method.

The control- and data flow analysis relies on the third-
party library Scalpel [33]. Scalpel is an open source Python
library that provides essential program analysis functions, such
as control-flow graph construction, static single assignment
representation, constant propagation, and alias analysis 8. Using
Scalpel, we first created all possible control-flow graphs
for Python source code files and then applied static single
assignment and constant propagation to them to identify the
actual values of variables. Specifically, static single assignment
module created an intermediate representation of variables
by renaming variable assignments with different names. This
intermediate representation of variables was then used by the
constant propagation module to record all values from an
assignment for a single variable. This way, we could track the
flow of variables through the source code and were able to
determine all possible values for a variable.

C. Research Paper Analysis

To identify whether hyperparameters are tuned and how it
is reported in the research papers, we conducted a domain and
a systematic research paper analysis.

1) Domain Analysis: Technically, the domain analysis
consists of three steps. First, we derived a set of diverse fields
from the state of the art categories provided by Papers with
Code 9 and the category taxonomy of arXiv 10. Second, we
manually assigned a field to each research paper. Finally, we
measured the inter-annotator agreement to assess the annotation
process and the resulting annotations.

8https://github.com/SMAT-Lab/Scalpel
9https://paperswithcode.com/sota
10https://arxiv.org/category_taxonomy

a) Deriving ML Fields.: Almost each research paper in
the Papers with Code corpus contains metadata, such as code
statistics, GitHub metadata, and paper metadata. The paper
metadata includes ML tasks, which refer to the state of the
art categories of Papers with Code, and arXiv categories,
representing different ML fields. Since there is an overlap
between the ML fields from both sources, we first merged all
categories, then two authors discussed the resulting categories.
If two authors could not find an agreement for an ML field,
a third author was consulted to discuss the ML field. A final
agreement was reached when at least two authors agreed on
the ML field. Finally, we end up with 17 different ML field
that cover all arXiv and state of the art categories of Papers
with Code: Computer Vision, Natural Language Processing,
Audio, Robotic, Mathematics, Physics, Machine Learning,
Games, Physics, Information Retrieval, Software Engineering,
Finance, Biology, Security, Electrical Engineering, Social and
Information Networks, Databases, Miscellaneous. To have a
clear distinction between each ML field, we explain in detail
what areas an ML field covers at our supplementary website 11.

b) Annotating Paper.: The main author went through all
papers and manually assigned one ML field to each paper
based on ML tasks and arXiv categories that are assigned to
the papers. For papers that did not have ML tasks or arXiv
categories assigned, we read the title and abstract to assign an
ML field to a paper.

c) Inter-Annotator Agreement.: To check the annotation
process and the agreement among annotators, a second author
labeled a set of 100 randomly selected papers. For this dataset,
we calculated Cohen’s kappa coefficient [34], a statistic to
measure the agreement between a pair of annotators. Given
Landis and Kochs scale [35], Cohen’s kappa statistic was 0.67,
indicating moderate agreement.

2) Paper Analysis: The paper analysis consists of four
steps. First, we created a vocabulary of keywords related to
hyperparameter tuning. Second, we applied these keywords to
our research papers to identify sections that describe the usage
and tuning of hyperparameters. We then read each section
found with our keywords and annotated each paper to answer
RQ2. Finally, we measured the inter-annotator agreement to
assess the annotation process and the resulting annotations.

a) Creating Keywords.: Due to the large number of papers,
we did not read the entire papers. Instead, we focused on a
keyword search to identify sections describing implementation
and experimentation details, as these sections typically reveal
whether and how ML methods are tuned. To find these sections,
we applied a keyword search to all papers. As the set of
keywords is crucial to find relevant sections, we first built
our vocabulary by initially reading 50 papers and extracting
terms related to hyperparameter tuning. The final keywords
in our vocabulary are the following: parameter, tune, fit,
train, search, sweep, optimize, tuning, optimizing, optimization,
implementation, experiment.

11Supplementary Website: https://zenodo.org/record/7745740

https://github.com/SMAT-Lab/Scalpel
https://paperswithcode.com/sota
https://arxiv.org/category_taxonomy
https://zenodo.org/record/7745740

b) Keyword Search.: We created a search query for
each keyword in our vocabulary and applied it to the papers,
including the papers used to create the vocabulary. This way,
we ensure that we apply the same search queries to each paper.
Applying the search queries to our papers resulted into sections
that possibly describe the usage and tuning of hyperparameters.

c) Annotating Papers.: Next, we carefully read each
section found with our keywords and annotated each paper
guided by RQ2. To answer RQ2, we divided RQ2 into the
following sub-questions, which we answered for each paper
accordingly:

• Q1: Is hyperparameter tuning reported?
• Q2: Are the final hyperparameter values reported?
• Q3: Which technique is used to tune hyperparameters?
Due to the nature of Q1-2, we answered these questions by

annotating the papers with yes or no. Specifically, when we
found evidence that hyperparameter tuning was performed
(e.g., the tuning technique and the tuned hyperparameters
were clearly described in a paper), we answered Q1 with
yes. Conversely, if we did not find any reference of hyperpa-
rameter tuning in a paper, we answered this question with no.
Similarly, we answered Q2 with yes when we found that final
hyperparameter values (i.e., the respective hyperparameters
and their final values) were reported, otherwise we annotated
this question with no. During our analysis, we also extracted
each hyperparameter tuning approach and framework that were
mentioned in these sections to answer Q3.

d) Inter-Annotator Agreement.: As two authors conducted
the analysis of research papers, we finally measured the inter-
annotator agreement (IAA) to assess the annotation process
and ensure the correctness of the resulting annotations. To this
end, each author randomly selected a sample set of 100 paper
annotated by the other author and annotated the papers again.
This helped us to cross-validate the annotations and measure the
annotator agreement. For this dataset, we calculated Cohen’s
kappa statistic [34] for Q1-2. Given Landis and Kochs scale [35],
Cohen’s kappa statistic was 0.60 for Q1, indicating moderate
agreement, and 0.70 for Q2, indicating a substantial agreement.

IV. RESULTS

In this section, we present the results of analyzing the code
repositories along with their respective research papers. To
answer our research questions, we first analyzed the code
repositories to determine the use of hyperparameters using
static code analysis. We then systematically reviewed related
research papers and combined our findings with the data from
the code repositories to shed light on hyperparameter tuning
and reporting practices in ML research.

A. RQ1: Which, how, and to what extent are ML methods
configured with respect to their hyperparameter settings?

Finding 1: The most commonly used methods are neural-
network building blocks provided by PyTorch and Tensor-
Flow. By contrast, few methods from scikit-learn are used
that cover ML and experimental methods.

TABLE II: Top 10 most used methods in the analyzed corpus.
Under Parameter Settings, column Count indicates the number
of available of parameters to configure the method, while
column Avg. shows the average number of parameters used to
configure the methods.

ML Library Usage Parameter Settings

Method Count Category Count Avg. Avg. % Most adjusted

sc
ik

it-
le

ar
n

StandardScaler 192 preprocessing 3 0.12 (4.0) default
PCA 136 decomposition 9 1.23 (13.7) n_components
KMeans 134 cluster 9 2.28 (25.3) n_clusters
LogisticRegression 124 linear_model 15 2.40 (16.0) C
TSNE 98 manifold 16 2.74 (16.9) n_components
KFold 98 model_selection 3 2.47 (91.3) n_splits
LinearRegression 85 linear_model 5 0.36 (7.2) default
LabelEncoder 71 preprocessing 0 0.00 - default
MinMaxScaler 67 preprocessing 3 0.42 (14.0) default
SVC 65 svm 15 1.48 (9.9) kernel

Te
ns

or
Fl

ow

Variable 2007 tensorflow 12 1.98 (16.5) initial_value
Session 1572 compat 3 0.58 (19.3) default
Dense 1554 keras 11 2.72 (24.7) units
Saver 1002 compat 15 0.68 (4.5) default
AdamOptimizer 908 compat 6 1.41 (23.5) learning_rate
DEFINE_string 836 compat 6 3.00 (50.0) name, default, help
ConfigProto 763 compat 17 1.21 (7.1) allow_soft_placement
Dropout 693 keras 4 1.03 (25.8) rate
DEFINE_integer 654 compat 8 3.00 (37.5) name, default, help
TensorShape 612 tensorflow 1 1.00 (100) dims

Py
To

rc
h

Conv2d 15072 neural networks 11 4.95 (45.0) in_channels
Linear 14360 neural networks 5 2.16 (43.2) in_features
Sequential 11247 neural networks 1 0.93 (93.0) *args
ReLU 9097 neural networks 1 0.61 (61.0) inplace
BatchNorm2d 6507 neural networks 7 1.34 (19.1) num_features
Parameter 4812 neural networks 2 1.17 (58.5) data
DataLoader 4511 utils 15 4.09 (27.3) dataset
ModuleList 4169 neural networks 1 0.50 (50.0) default
Dropout 3694 neural networks 2 0.95 (47.5) p
Adam 2234 optim 7 1.57 (22.4) default

The number of the ML libraries per code repository varies.
We obtained 1258 code repositories that import only one ML
library, 653 that import two, and 89 that import all three
libraries. Among all code repositories, PyTorch is the most
frequently used ML library, being imported in 65 % of them.
Scikit-learn comes next, being imported in 43 % of the code
repositories, followed by TensorFlow, which is imported in
34 % of the code repositories. In Table II, we show the
ten most frequently used methods of each library in these
code repositories, how often each method has been used,
and information about their configuration (i.e., the number
of available hyperparameters and how many have been set,
and the most frequently set parameter). The most commonly
used methods in our corpus belong to PyTorch, followed by
TensorFlow. These correspond to the building blocks used to
construct neural networks, such as type and number of layers
and activation functions. Also, these parameters may technically
not tune an ML model, but rather specify its architecture and
complexity. Hence, the large number is to be expected for these
frameworks. By contrast, we found few scikit-learn methods
in the code repositories, which include ML methods, such as
LogisticRegression, but a larger variety, such as experimental
methods for preprocessing (e.g., StandardScaler).

Although this first insight may not be surprising and not

TABLE III: Top 5 most commonly used ML methods of the
analyzed repositories. Call Stats states the total number of calls
and the calls without any given parameter. Symbol ’-’ indicates
that a method cannot be called without a given parameter.
Param Stats provides the number of available hyperparameters
and the average usage across all calls. Column Avg.* subtracts
mandatory parameters.

ML Library Call Stats Param Stats

Method / Constructor Total Without Count Avg. Avg.*

sc
ik

it-
le

ar
n KMeans 134 - 9 2.28 1.28

LogisticRegression 124 30 15 2.40 2.40
LinearRegression 85 62 5 0.36 0.36
SVC 65 15 15 1.48 1.48
RandomForestClassifier 58 12 18 2.34 2.34

Te
ns

or
Fl

ow

AdamOptimizer 909 41 6 1.41 1.41
Adam 265 29 14 1.29 1.29
GradientDescentOptimizer136 - 3 1.01 1.01
MomentumOptimizer 83 - 5 2.28 0.28
RMSPropOptimizer 78 - 7 2.08 1.08

Py
To

rc
h

Adam 2234 - 7 1.57 0.57
SGD 1057 - 7 2.33 0.33
RMSprop 150 - 7 2.37 1.37
AdamW 62 - 7 1.74 0.74
Adagrad 55 - 6 1.29 0.29

relevant to the research question at first sight, it enables us to
distinguish parameter settings used for building an ML model
versus parameter settings used for tuning an ML model. Since
we are interested in tuning, we focus in the following on
ML methods from the optimization classes of TensorFlow and
PyTorch, as well as classifier, regressor, and clustering methods
from scikit-learn as these methods are also the main target for
auto tuning and hyperparameter optimization frameworks.

Finding 2: Only a few hyperparameters of ML methods
are set, the majority remain untouched. Consequently, most
hyperparameters retain their default values.

Already Table II indicates in column Avg. % that only a
low percentage of available hyperparameters are actually used
for tuning. However, since the model-building methods may
distort the picture, we list the five most commonly used
ML methods with respect to tuning parameters in Table III.
The number of hyperparameters (column Count) ranges from 3
(GradientDescentOptimizer) to 18 (RandomForestClassifier).
Most of them have at least one mandatory parameter (e.g.,
number of clusters in KMeans) such that we must account for
this in our analysis. So, column Avg.* has an adjusted average
parameter usage where we removed the mandatory parameters.
We clearly see that for most methods, we have at most only
one additional parameter set.

Clearly, some parameters may be relevant only in special
cases; however, even the optimizer methods of TensorFlow
and PyTorch are barely used for tuning. Here, we have
parameters, such as decay and weight_decay for regularization
(e.g., for Adagrad), which is important for regularization. These

parameters are mostly untouched. Similar tuning options exist
for the other methods and are mostly not set. For TensorFlow,
the first parameter of the 5 most used methods is always the
learning rate. Although there exists a default value, the learning
rate gets nearly always set, but the remaining regularization
parameters remain unchanged, similar to PyTorch. Using the
default values for most parameters is surprising, as they are
generally not ideal choices [7], [36], [37]. Naturally, there
are some cases where sticking to default values is reasonable,
e.g., when the computational effort required to train and tune
and ML model makes hyperparameter tuning infeasible, or
when ML libraries already provide sensible default parameter
that might be good enough in standard settings to achieve a
sufficient performance [38]. Nevertheless, these default values
may not provide the best possible results, which could be
achieved with hyperparameter tuning.

Finding 3: Hyperparameters are set by a large fraction with
a constant value, ranging from 42 % up to 69 % depending
on the framework. It is unclear how these values have been
obtained by the developer. In the newer frameworks, more
hyperparameter values originate from a variable context
(e.g., method calls or stored program variables) that enable
an active tuning of these parameters.

Hyperparameters can be passed in different forms to an ML
method. To derive a better picture how parameters are set, we
extracted the AST-type information from the parsed ML code.
This resulted in 8 type AST-type categories, covering classical
data types, such as string, numeric, and boolean values, but also
more complex types, such as function calls, operations, and
passed variables. In Table IV, we show the categories of types
that are assigned to the hyperparameters of the scikit-learn,
TensorFlow, and PyTorch ML methods.

We see a large variation of passing values to an ML method
and differences between scikit-learn and the two libraries
TensorFlow and PyTorch. In scikit-learn, 69 % parameters are
given as constant values whereas for TensorFlow and PyTorch,
the number drops to 58 % and 42 %. This is surprising as
constant values cannot be used by experimentation frameworks,
such as MLflow to automatically adapt and document these
values. Also, it means that they cannot be easily change via
configuration files. Furthermore, it remains unclear how these
values have been determined. For the remaining cases, we see
that method calls are only marginally used. This means that we
do not see parameter tuning frameworks or functions probing
for different distributions of values in our corpus. So, again,
this hints that parameter tuning is rarely used or only realized
via external settings of variables.

To underpin this observation, we depict in each cell of the
rightmost column of Table V a list of the most used parameter
types that corresponds to the list of parameter names in column
Top 3. These parameter names represent the most changed
parameters of the respective ML method. Furthermore, column
Count depicts how often a parameter has been given a value.
Columns Variable and Constant that their relative percentage of

TABLE IV: Distribution of Python AST-types passed as
hyperparameters to ML methods. Constant means that a
constant value has been assigned to a variable which was
then passed to an ML method. For unknown cases, the data-
flow analysis did not terminate or produced an error.

Type scikit-learn TensorFlow PyTorch

C
on

st
an

t

Numeric 33.9 % 29.3 % 21.8 %
String 16.7 % 0.7 % 0.0 %
Boolean 6.8 % 1.7 % 3.3 %
None type 2.6 % 0.1 % 0.1 %
Mapping 1.7 % 0.0 % 0.0 %
Constant 7.3 % 26.3 % 16.8 %

Total: 69.0 % 58.1 % 42.0 %

V
ar

ia
bl

e Variable 23.1 % 36.8 % 40.6 %
Call 3.9 % 4.1 % 6.9 %
Operation 3.2 % 1.0 % 1.0 %

Total: 30.2 % 41.9 % 48.5 %

Unknown 0.8 % 0.0 % 9.5 %

parameter values passed as either a fixed value or a changeable
value that can be set within a (tuning) function, operation,
or external experimentation framework. In total, 951 (35.5 %)
of parameter values map to a constant value whereas 1753
(65.5 %) can be variably set. This indicates still a large fraction
of a constant value, but shows that, in contrast to all other
methods, more parameters are set with customization in mind
for the most commonly used methods.

Finding 4: The most important hyperparameters stated by
related work have been most often used in our corpus.

Related work on hyperparameter importance and tuning [12],
[39], [40] report several hyperparameters that should be
adjusted. We found the same parameters in our corpus. For
instance, the learning rate to train neural networks [41] is the
most commonly set hyperparameter across all ML optimizer
methods of TensorFlow and PyTorch in our data. Similarly, the
most commonly set hyperparameter for scikit-learn methods are
also considered important, such as n_clusters for KMeans [39],
the learning rate of the GradientBoostingClassifier [40], and the
regularization strength C for LogisticRegression, LinearSVC,
or SVC [12], as shown in Table V.

Answer RQ1: ML methods provide many tuning parame-
ters, but only a fraction is actually set. Consequently,
most hyperparameters commonly retain their default
values when an ML method is being called. Moreover,
if hyperparameters are set, the majority of them are
constant values without the possibility for tracking and
automatically tuning them with external frameworks.

B. RQ2: How are hyperparameter settings reported in the
accompanied papers?

Finding 5: Despite the fact that hyperparameter tuning is
crucial for the resulting ML model, hyperparameter tuning
is explicitly reported only in a few research papers. In
about two thirds of our corpus, authors reported the final
hyperparameter values, indicating a good, but not perfect
state of reproducibility for the published papers.

Out of 2000 papers, we identified 514 (26 % of all papers), in
which hyperparameter tuning was explicitly reported. This is a
surprising finding, considering the importance of tuning and the
abilities to substantially outperform related, but untuned models.
We discuss the consequences of this result in Section V.

Furthermore, values of hyperparameters have reported in
1281 papers (64 % of all papers). The immediate question is
how these values have been obtained. Do they originate from
expert knowledge, pre-studies, tuning activities, or just first
guesses? Unfortunately, this question cannot be answered, but
when comparing these numbers to parameter usages, especially
whether variable settings have been used (cf. Table IV), we
see that most often only constant values are applied. Only
barely are tuning activities recognizable such that tuning must
either be done outside the provided repository or is absent. So,
although it is a good sign that values are reported at all, it
hinders the reproducibility of these results when it is unclear
how these parameters have been obtained as such a tuning my
be different for different data slices or contexts.

Finding 6: Regardless the ML field, most research pa-
pers do not explicitly report hyperparameter tuning, but
computer vision and software engineering seem to have
especially low hyperparameter-tuning practices.

To get a more objective picture about how and whether
different ML fields report hyperparameter tuning, we counted
the number of papers for each ML field that actually reported
hyperparameter tuning. We show our results in Table VI.

Our findings reveal that most of the papers in our corpus
belong to computer vision, natural language processing, and
machine learning, accounting for approximately 81 % of all
papers. We observe very similar reporting practices for all ML
fields. Higher and lower values for some fields may be an
artifact of a low sample in our corpus, such that we refrain
from a possible misleading interpretation. At most, we can
state that computer vision has a very low tuning activity
compared to all other fields, which indicates an interesting
result. Moreover, the 12 software-engineering papers in our
dataset have a very low fraction of reported tuning. This, at least,
indicates that our community should consider this activity more
seriously. Possible explanations for the low tuning activities
in the different fields may include the lack of an appropriate
experimental setup, limited knowledge of the effects of certain
hyperparameters, time pressure, or knowledge gaps. Moreover,
the computational effort, which is often required to train and
tune large ML models, may also be a reason for low tuning
activities, especially in the field of natural language processing
and computer vision.

TABLE V: The five most commonly used ML methods with the top three most commonly set hyperparameter. Column Most
Used Type represents the types that are most frequently assigned to the hyperparameters, column Count depicts how often
the corresponding parameter has been set, column Constant and Variable represent the percentage of constant or changeable
parameter values passed as the corresponding parameter.

ML Library Usage Hyperparameter

Method Calls Top 3 Count Most Used Type Constant in % Variabel in %

sc
ik

it-
le

ar
n LogisticRegression 33 [C, solver, random_state] [15, 13, 12] [Variable, String, Numeric] [20, 100, 67] [80, 0, 33]

SVC 28 [gamma, kernel, C] [9, 6, 4] [Numeric, String, Call] [67, 67, 25] [33, 33, 75]
KMeans 22 [n_clusters, random_state, init] [22, 13, 7] [Variable, Numeric, String] [23, 54, 71] [77, 46, 29]
GradientBoostingClassifier 20 [n_estimators, learning_rate, random_state] [19, 17, 15] [Numeric, Numeric, Numeric] [74, 94, 71] [26, 6, 28]
LinearSVC 17 [C, dual, class_weight] [12, 8, 7] [Variable, Boolean, Call] [25, 100, 86] [75, 0, 14]

Te
ns

or
flo

w AdamOptimizer 414 [learning_rate, beta1, beta2] [405, 223, 19] [Variable, Numeric, Numeric] [5, 94, 42] [95, 6, 58]
Adam 91 [learning_rate, epsilon, clipvalue] [81, 26, 22] [Numeric, Numeric, Numeric] [36, 65, 41] [64, 35, 59]
GradientDescentOptimizer 42 [learning_rate, use_locking] [42, 2] [Variable, Variable] [69, 50] [31, 50]
AdagradOptimizer 30 [learning_rate, initial_acc._val, use_locking] [30, 7, 1] [Variable, Numeric, Variable] [3, 71, 0] [97, 29, 100]
MomentumOptimizer 29 [learning_rate, momentum ,use_nesterov] [29, 29, 12] [Variable, Numeric, Boolean] [14, 62, 83] [86, 38, 17]

Py
to

rc
h

Adam 646 [lr, betas, weight_decay] [601, 188, 181] [Variable, Sequence, Variable] [22, 96, 23] [78, 4, 77]
SGD 233 [lr, momentum, weight_decay] [219, 151, 101] [Variable, Variable, Variable] [14, 37, 20] [86, 63, 80]
RMSprop 47 [lr, momentum, alpha] [44, 25, 24] [Variable, Variable, Variable] [0, 16, 25] [100, 84, 75]
AdamW 18 [lr, weight_decay, eps] [18, 13, 11] [Call, Numeric, Numeric] [6, 77, 73] [94, 23, 27]
Adagrad 13 [lr, weight_decay, lr_decay] [11, 7, 3] [Numeric, Numeric, Numeric] [9, 0, 33] [91, 100, 67]

TABLE VI: Number of research papers per ML field.

ML Field Count Hpyperparameter Tuning

Reported Not reported

Computer Vision 797 123 (15 %) 674 (85 %)
Machine Learning 479 187 (39 %) 292 (61 %)
Natural Language Processing 349 114 (33 %) 235 (67 %)
Physics 63 20 (32 %) 43 (68 %)
Audio 46 8 (17 %) 38 (83 %)
Robotic 40 5 (12 %) 35 (88 %)
Information Retrieval 38 18 (47 %) 20 (53 %)
Security 31 5 (16 %) 26 (84 %)
Math 29 2 (7 %) 27 (93 %)
Miscellaneous 25 5 (20 %) 20 (80 %)
Biology 24 9 (38 %) 15 (62 %)
Games 23 5 (22 %) 18 (78 %)
Electrical Engineering 21 5 (24 %) 16 (76 %)
Social and Information Networks 13 3 (23 %) 10 (77 %)
Software Engineering 12 2 (17 %) 10 (83 %)
Databases 6 3 (50 %) 3 (50 %)
Finance 4 1 (25 %) 3 (75 %)

Finding 7: Most papers do not state a concrete tuning
technique and the remaining papers use rather conservative
techniques for tuning, such as random probing, grid search,
and manual tuning, despite the variety of techniques
available for hyperparameter tuning.

By analyzing the papers that explicitly describe hyperparame-
ter tuning, we found that 281 papers (ca. 55 %) did not mention
a concrete hyperparameter tuning technique. Among the papers
that mentioned specific tuning techniques, the most popular
techniques were grid search, manual tuning, random search,
and Bayesian optimization, which were mentioned in 133, 53,
20, and 20 papers, respectively. Since grid search, manual
tuning, and random search cannot be considered an advanced
or systematic approach, we are astonished by the low state of
practice, especially compared when seen a growing number

of papers focusing on tuning. Furthermore, we found several
highly specialized tuning methods, such as ant lion optimization,
Gaussian bandit optimization, or particle swarm optimization
which were only mentioned in a very few papers. We also
found a few highly specialized hyperparameter tuning libraries,
such as Optuna, Hyperopt, and GPyOpt, indicating that a few
papers employed different libraries for hyperparameter tuning.
We will provide a list of all tuning techniques and frameworks
found with their occurrences at our supplementary website 12.

Answer RQ2: Despite the importance and impact of
hyperparameters on the resulting ML model, we found
a stark discrepancy between applying hyperparameter
tuning and reporting it appropriately in the corresponding
research papers. Overall, tuning seems to be not a com-
mon practice and it often remains unclear how parameter
values have been obtained, hampering reproducibility of
results.

V. DISCUSSION

In this section, we discuss our findings on hyperparameter
usage and tuning, as well as reporting practices in ML research.

Hyperparameter Usage of ML methods. Our results
indicate that the configuration settings of ML methods do
not receive the attention they actually need, since we found
that only a few of the available hyperparameters are set,
whereas the majority of the available hyperparameters remain
untouched. Table VII depicts this result in more detail.13

Columns Actually Set across all frameworks report only low
fractions of parameters with changed values. Interestingly, even
there, the default values are still used for some parameters.

12Supplementary Website: https://zenodo.org/record/7745740
13Columns Und. represent the percentage of parameter values for which we

cannot definitively state whether a default or a custom value has been used
(e.g., because variable values are set outside the reachable data-flow analysis).

https://zenodo.org/record/7745740

TABLE VII: Statistics on hyperparameter usage in code repositories where the associated research paper reported hyperparameter
tuning sorted by year, including the available number of hyperparameters (total), the number of actually set hyperparameters,
and the fraction between default, customized, and undecidable (Und.) values.

Paper Stats. scikit-learn TensorFlow PyTorch

Year Count Total Actually Set Default vs. Custom Und. Total Actually Set Default vs. Custom Und. Total Actually Set Default vs. Custom Und.

2011 1 90 6 (6.7 %) 0 % - - - - - - - -
2013 1 - - - - 14 1 (7.1 %) 0 % - - - -
2014 7 - - - - 91 21 (23.1 %) 0 % 84 24 (28.6 %) 42 %
2015 10 - - - - 6 1 (16.7 %) 0 % 90 25 (27.8 %) 8 %
2016 20 12 2 (16.7 %) 0 % 132 12 (9.1 %) 50 % 21 7 (33.3 %) 14 %
2017 27 25 14 (60.0 %) 43 % 252 45 (17.9 %) 54 % 250 56 (22.4 %) 41 %
2018 79 599 189 (31.6 %) 31 % 592 178 (30.1 %) 56 % 834 171 (20.5 %) 56 %
2019 103 566 72 (12.7 %) 12 % 1761 533 (30.3 %) 12 % 1179 288 (24.4 %) 54 %
2020 162 725 118 (16.3 %) 9 % 1355 212 (15.6 %) 42 % 2545 744 (29.2 %) 49 %
2021 104 1541 211 (13.7 %) 21 % 460 70 (12.7 %) 44 % 1798 438 (24.4 %) 49 %

A similar phenomenon has been observed in the software
engineering field. Software systems often provide hundreds
of different configuration options to tailor the behavior of a
system to user requirements, such as performance, security,
and functionality [42]. However, Xu et al. [43] report in their
study that only a small percentage of configuration options are
set by users, while the majority of configuration options are
not touched at all. Their observation is in line with what
we have found for the actual parameters settings of ML
methods of different ML libraries. Similarly, we found that
most hyperparameters of ML methods are not used at all.
Those unused parameters enlarge the configuration space of ML
methods and neural networks, possibly unnecessarily increasing
the optimization space of parameters.

We see two reasons why most of the available hyperparam-
eters are unused. First, the default values might be already
well chosen. In light of this, researchers may believe that some
ML methods, such as linear and logistic regression, have been
extensively studied, such that their default values should work
in most cases. Hence, it seems that researchers tend to trust
default values for many hyperparameters without questioning
whether the default values are actually good. However, previous
work has already shown that default values are generally not
an ideal solution [7], [36], [37], as they, for example, harm the
reproducibility of ML projects and experiments [44]. Second,
researchers do not touch hyperparameters, although their tuning
could improve the results. In this case, we need to find reasons
why this is the case. Researchers may not understand the
importance of hyperparameters, require a substantially larger
setup and time for tuning, or just do not know how to set them
appropriately. Clarifying this question can be an important
future research activity in this field.

Rare Tuning Activities. Despite the importance of hy-
perparameter tuning on the resulting ML model, only 25 %
of our papers report tuning. This result can have profound
consequences for ML papers: We would expect that similar
papers can easily improve SOTA results just by tweaking the
parameters, but without substantial new insights. This can
increase the already huge number of ML papers (or a reason
thereof) without having an actual novel contribution. Moreover,

we have difficulties to assess the actual capabilities of current
methods. Does tuning further improve the results or are we
already at our maximum. Even worse, when we do not know
whether parameters have been tuned at all (as more than half
of our papers do not report these), we cannot be sure whether
reported improvements stem from tuning. However, our code
analysis hint more in the direction that parameters are actually
not tuned, leaving out considerable potential of improvements
via experimentation tracking frameworks.

Lack of Experimentation and Reporting Practices. A last
surprising result is the absence of experimentation practices and
frameworks. Recent years have seen the rise of many successful
experiment frameworks, such as Weights and Biases and
MLflow, but our data does not align with that. It indicates the
industrial practices are more advanced and rigorous compared
to scientific code and reporting practices. Here is where we
see an easy and impactful action: Using experimentation
frameworks can not only improve the results of the ML
methods, but also provide parameter tracking, logging, and
reproducibility capabilities that most of our papers clearly lack.

VI. THREATS TO VALIDITY

Internal Threats to Validity. Identifying sections in research
papers that describe hyperparameter usage and tuning may
impose a threat to internal validity. To mitigate this risk of
missing potentially relevant sections of a paper, we carefully
created a set of keywords related to hyperparameter tuning
by reading 50 research papers in our corpus and extracting
keywords that have been used to describe hyperparameter
tuning. Furthermore, since the metadata of some research papers
may be incomplete, we could neither rely on state of the art
categories of Papers with Code, nor on the arXiv categories to
classify the research papers into different ML fields. Hence,
we merged the categories of Papers with Code and arXiv and
iteratively refined and discussed each category. If two authors
could not agree, a third author was consulted until an agreement
was reached. The annotation process of research papers may be
subjective and could introduce researcher bias. To mitigate this
threat, two authors performed the domain and paper analysis
for which we measured the inter-annotator agreement among

the authors. We measured moderate and substantial agreement
for the domain and research paper analysis.

Threats to External Validity. Our external threat arises from
the selection of code repositories and concerns the ability to
generalize our results. In our study, we targeted the Papers with
Code corpus, which contains research papers and associated
code repositories generated between 2009 and 2021 of different
domains. We randomly selected a large sample of 2000 code
repositories that met our criteria for inclusion. Although we
cannot claim that our results can generalize to every code
repository, the large corpus and clear results indicate a clear
trend of parameter usage.

VII. CONCLUSION

The success story of ML-enabled software systems is based
on a careful experimentation process, where data scientists
probe the search space of ML algorithms and their hyper-
parameters. Numerous papers emphasize the importance of
hyperparameter tuning on the accuracy and replicability of the
resulting ML model, and even more propose novel solutions to
this activity. Simultaneously, there is no systematic study that
analyzes whether and how parameters are tuned for research
papers. To this end, we analyze 2000 code repositories and
their associated research papers from the Papers with Code
corpus. We analyze whether and how hyperparameters are set
in three widely used ML libraries—scikit-learn, TensorFlow,
and PyTorch—and if they are appropriately reported in the
accompanied research papers. We found a considerable discrep-
ancy between the available and actually changed parameters
for across ML methods and frameworks. We found that
most parameters are given a constant values, indicating the
absence of a tuning technique or experimentation framework.
Furthermore, we also found a stark contrast between stating
concrete hyperparameter values in a paper and reporting the
tuning activity leading to these values. There is a substantial
lack of reporting with below half the papers not mentioning
hyperparameters at all and only about a quarter stating tuning
activities. In conclusion, our results reveal a significant need for
a critical discussion on research and reporting practices in ML
research, advocating the use of industry-strength experiment
frameworks, such as MLflow and Wheights & Biases to
properly tune ML models and enable better reproducibility
of the results.

VIII. ACKNOWLEDGMENT

The work of the authors has been supported by the Federal
Ministry of Education and Research of Germany and by the
Sächsische Staatsministerium für Wissenschaft Kultur und
Tourismus in the program Center of Excellence for AI-research
”Center for Scalable Data Analytics and Artificial Intelligence
Dresden/Leipzig”, project identification number: ScaDS.AI, and
by the BMBF project Agile-AI. Siegmund’s work has been
funded by the German Research Foundation (SI 2171/2-2).

REFERENCES

[1] J. Chakraborty, S. Majumder, Z. Yu, and T. Menzies, “Fairway: a way to
build fair ml software,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 654–665.

[2] M. Hutson, “Artificial intelligence faces reproducibility crisis,” 2018.
[3] S. Kapoor and A. Narayanan, “Leakage and the reproducibility crisis in

ml-based science,” arXiv preprint arXiv:2207.07048, 2022.
[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn:
Machine learning in python,” the Journal of machine Learning research,
vol. 12, pp. 2825–2830, 2011.

[5] M. N. Gevorkyan, A. V. Demidova, T. S. Demidova, and A. A.
Sobolev, “Review and comparative analysis of machine learning libraries
for machine learning,” Discrete and Continuous Models and Applied
Computational Science, vol. 27, no. 4, pp. 305–315, 2019.

[6] Meta, “Pytorch developer ecosystem expands, 1.0 stable release now
available,” https://engineering.fb.com/2018/12/07/ai-research/pytorch-
developer-ecosystem-expands-1-0-stable-release/, 2023, accessed: 2023-
23-01.

[7] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, 2020.

[8] G. Luo, “A review of automatic selection methods for machine learning
algorithms and hyper-parameter values,” Network Modeling Analysis in
Health Informatics and Bioinformatics, vol. 5, no. 1, pp. 1–16, 2016.

[9] S. Shekhar, A. Bansode, and A. Salim, “A comparative study of hyper-
parameter optimization tools,” in 2021 IEEE Asia-Pacific Conference
on Computer Science and Data Engineering (CSDE). IEEE, 2021, pp.
1–6.

[10] K. Das and R. N. Behera, “A survey on machine learning: concept, algo-
rithms and applications,” International Journal of Innovative Research in
Computer and Communication Engineering, vol. 5, no. 2, pp. 1301–1309,
2017.

[11] I. H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions,” SN Computer Science, vol. 2, no. 3, pp. 1–21, 2021.

[12] H. J. Weerts, A. C. Mueller, and J. Vanschoren, “Importance of
tuning hyperparameters of machine learning algorithms,” arXiv preprint
arXiv:2007.07588, 2020.

[13] F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond manual tuning of
hyperparameters,” KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 329–337,
2015.

[14] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.

[15] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

[16] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
conference on learning and intelligent optimization. Springer, 2011, pp.
507–523.

[17] I. Dewancker, M. McCourt, and S. Clark, “Bayesian optimization for ma-
chine learning: A practical guidebook,” arXiv preprint arXiv:1612.04858,
2016.

[18] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,
“Hyperparameter optimization for machine learning models based on
bayesian optimization,” Journal of Electronic Science and Technology,
vol. 17, no. 1, pp. 26–40, 2019.

[19] P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta, Metalearning:
Applications to data mining. Springer Science & Business Media,
2008.

[20] S. Sanders and C. Giraud-Carrier, “Informing the use of hyperparam-
eter optimization through metalearning,” in 2017 IEEE International
Conference on Data Mining (ICDM). IEEE, 2017, pp. 1051–1056.

[21] J. N. van Rijn, F. Pfisterer, J. Thomas, A. Muller, B. Bischl, and
J. Vanschoren, “Meta learning for defaults: Symbolic defaults,” in Neural
Information Processing Workshop on Meta-Learning, 2018.

[22] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: Bandit-based configuration evaluation for hyperparameter
optimization,” in ICLR (Poster), 2017.

[23] F. Pfisterer, J. N. van Rijn, P. Probst, A. C. Müller, and B. Bischl, “Learn-
ing multiple defaults for machine learning algorithms,” in Proceedings

https://engineering.fb.com/2018/12/07/ai-research/pytorch-developer-ecosystem-expands-1-0-stable-release/
https://engineering.fb.com/2018/12/07/ai-research/pytorch-developer-ecosystem-expands-1-0-stable-release/

of the Genetic and Evolutionary Computation Conference Companion,
2021, pp. 241–242.

[24] R. G. Mantovani, A. L. Rossi, J. Vanschoren, B. Bischl, and A. C.
Carvalho, “To tune or not to tune: recommending when to adjust
svm hyper-parameters via meta-learning,” in 2015 International Joint
Conference on Neural Networks (IJCNN). Ieee, 2015, pp. 1–8.

[25] N. Lavesson and P. Davidsson, “Quantifying the impact of learning
algorithm parameter tuning,” in AAAI, vol. 6, 2006, pp. 395–400.

[26] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: importance of
hyperparameters of machine learning algorithms,” The Journal of Machine
Learning Research, vol. 20, no. 1, pp. 1934–1965, 2019.

[27] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Identifying key algorithm
parameters and instance features using forward selection,” in International
Conference on Learning and Intelligent Optimization. Springer, 2013,
pp. 364–381.

[28] A. Biedenkapp, M. Lindauer, K. Eggensperger, F. Hutter, C. Fawcett,
and H. Hoos, “Efficient parameter importance analysis via ablation
with surrogates,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, no. 1, 2017.

[29] C. Fawcett and H. H. Hoos, “Analysing differences between algorithm
configurations through ablation,” Journal of Heuristics, vol. 22, no. 4,
pp. 431–458, 2016.

[30] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for
assessing hyperparameter importance,” in International conference on
machine learning. PMLR, 2014, pp. 754–762.

[31] J. N. Van Rijn and F. Hutter, “An empirical study of hyperparameter
importance across datasets.” in AutoML@ PKDD/ECML, 2017, pp. 91–
98.

[32] ——, “Hyperparameter importance across datasets,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 2367–2376.

[33] L. Li, J. Wang, and H. Quan, “Scalpel: The python static analysis
framework,” arXiv preprint arXiv:2202.11840, 2022.

[34] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[35] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[36] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it
really necessary?” Information and Software Technology, vol. 76, pp.
135–146, 2016.

[37] A. Bagnall and G. C. Cawley, “On the use of default parameter settings
in the empirical evaluation of classification algorithms,” arXiv preprint
arXiv:1703.06777, 2017.

[38] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler et al., “Api design
for machine learning software: experiences from the scikit-learn project,”
arXiv preprint arXiv:1309.0238, 2013.

[39] G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learning
through a heuristic oversampling method based on k-means and smote,”
Information Sciences, vol. 465, pp. 1–20, 2018.

[40] M. Bahmani, R. E. Shawi, N. Potikyan, and S. Sakr, “To tune or not to
tune? an approach for recommending important hyperparameters,” arXiv
preprint arXiv:2108.13066, 2021.

[41] D. Passos and P. Mishra, “A tutorial on automatic hyperparameter
tuning of deep spectral modelling for regression and classification tasks,”
Chemometrics and Intelligent Laboratory Systems, p. 104520, 2022.

[42] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–41,
2015.

[43] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
you have given me too many knobs!: Understanding and dealing with
over-designed configuration in system software,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 307–319.

[44] H. Zhang, L. Cruz, and A. van Deursen, “Code smells for machine
learning applications,” arXiv preprint arXiv:2203.13746, 2022.

	Introduction
	Background and State of the Art
	ML Libraries
	Types of Parameters
	Hyperparameter Tuning
	Hyperparameter Importance

	Methodology
	Project Selection
	Code Repository Analysis
	Research Paper Analysis
	Domain Analysis
	Paper Analysis

	Results
	RQ1: Which, how, and to what extent are ML methods configured with respect to their hyperparameter settings?
	RQ2: How are hyperparameter settings reported in the accompanied papers?

	Discussion
	Threats to Validity
	Conclusion
	Acknowledgment
	References

