
cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 11

Identifying Software Performance Changes
Across Variants and Versions

StefanMühlbauer1, Sven Apel2, Norbert Siegmund3

Abstract: Performance changes of configurable software systems can occur and persist throughout their
lifetime. Finding optimal configurations and configuration options that influence performance is already
difficult, but in the light of software evolution, configuration-dependent performance changes may lurk
in a potentially large number of different versions of the system. Building on previous work, we combine
two perspectives—variability and time—and devise an approach to identify configuration-dependent
performance changes retrospectively across the software variants and versions of a software system.
In a nutshell, we iteratively sample pairs of configurations and versions and measure the respective
performance, which we use to actively learn a model that estimates how likely a commit introduces
a performance change. For such commits, we infer the configuration options that best explain observed
performance changes. Pursuing a search strategy to measure selectively and incrementally further pairs,
we increase the accuracyof identified changepoints related to configurationoptions and interactions.Our
evaluationwith both real-world software systems and synthesized data demonstrates thatwe can pinpoint
performance shifts to individual configuration options and commits with high accuracy and at scale.

Keywords: Software Performance; Configurable Software Systems; Software Evolution

Modern software systems often provide configuration options to customize their functio-
nality and non-functional characteristics, such as energy consumption and performance.
Determining the influence of individual configuration options and their interactions on
performance (henceforth called performance influences) follows a two-step process. First, a
set of configurations is selected and thenmeasured via a benchmark or an application-specific
workload. Second, a machine learning technique, such as linear regression or classification
and regression trees, is applied to learn a performance model using the measurements as
a training set. With this model, we can estimate the performance of unseen configurations.

However, software is not a static entity, and as the code base changes so does performance. If
the performance influences change, prediction models from older versions make inaccurate
estimations for newer versions. Maintaining accurate prediction models throughout a
software’s lifetime vastly increases the cost of measurement since we would blindly select
configurations throughout the version history of a system to find the relevant change points.

By contrast, information about which performance influences change at what revision could
guide practitioners to re-learn models only upon such an occurrence or guide future testing
efforts.We address the problem of detecting change points in space (configuration dimension)
1 Universität Leipzig, Institut für Informatik, Leipzig, Deutschland, muehlbauer@informatik.uni-leipzig.de
2 Universität des Saarlandes, Saarland Informatics Campus, Saarbrücken, Deutschland, apel@cs.uni-saarland.de
3 Universität Leipzig, Institut für Informatik, Leipzig, Deutschland, norbert.siegmund@informatik.uni-leipzig.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:muehlbauer@informatik.uni-leipzig.de
mailto:apel@cs.uni-saarland.de
mailto:norbert.siegmund@informatik.uni-leipzig.de


12 StefanMühlbauer, Sven Apel, Norbert Siegmund

and time (version dimension) and devise a novel approach that retrospectively identifies
shifts in performance influences across a software system’s development history [MAS20].

In previous work, we presented how one can identify performance shifts in a series of
performancemeasurements of a single software configuration [MAS19]. Since configuration-
specific performance changes often emerge from changes in performance influences, it is
key to identify such causative options. To this end, we pinpoint performance change not
only to a specific commit, but also a set of responsible configuration options. Starting from
performance measurements of a small sample of random configurations and revisions, our
active learning and sampling strategy first estimates the temporal location of likely change
points (candidate commits). If a performance shift is observed at a candidate commit for
multiple configurations, the shift is marked for further analysis (candidate shift). Second, we
attribute each candidate shift to one ormore configuration options based on the configurations
for which it manifests. Last, to increase the reliability of these estimations, we iteratively add
newmeasurements to the training set and repeat the previous steps until the set of identified
change points does not change over a couple of iterations

The main challenge with this approach is the combinatorial complexity of the configuration-
and-revision space. To wisely select configurations and revisions, we balance the budget of
measurements between two objectives, exploration and exploitation. To capture undetected
performanceshifts,weselectconfigurationsandrevisionsrandomly(exploration).Wededicate
the remaining budget to re-evaluating the approach’s candidate solutions in each iteration (ex-
ploitation). Throughout the iterations, we shift the ratio ofmeasurements towards exploitation.

We show for three real-world software systems that our approach can precisely pinpoint
performance changes to a single commit and set of configuration options. Further experiments
with synthetic data demonstrate its scalability regarding the number of commits of a version
history, the number of configuration options, and the degree of option interactions.

Data AvailabilityWe provide all measurement data via the original companion web site 4.

Literatur

[MAS19] Mühlbauer, S.; Apel, S.; Siegmund, N.: Accurate Modeling of Performance
Histories for Evolving Software Systems. In: Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE, S. 640–652, Nov.
2019.

[MAS20] Mühlbauer, S.; Apel, S.; Siegmund, N.: Identifying Software Performance
Changes across Variants and Versions. In: Proceedings of the International
Conference on Automated Software Engineering (ASE). ACM, S. 611–622,
2020.

4 https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/

AI-4-SE/Changepoints-Across-Variants-And-Versions

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/AI-4-SE/Changepoints-Across-Variants-And-Versions
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/AI-4-SE/Changepoints-Across-Variants-And-Versions

