
cba

Schaefer et al. (Hrsg.): Software Engineering 2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Accurate Modeling of Performance Histories for Evolving
Software Systems

Stefan Mühlbauer1, Sven Apel2, Norbert Siegmund3

Keywords: Software Performance; Software Evolution; Test Prioritization

1 Introduction Throughout a software system‘s development history, its non-functional
properties, such as performance, evolve alongside. Individual modifications of the code
base (revisions) or batches thereof can entail changes in performance. Unless identified
and addressed, detrimental performance changes can add up to performance degrading
over time. The retrospective analysis of existing histories can unveil causative revisions
and, subsequently, help prioritize revisions for future performance regression testing. As
performance measurements come at a considerable cost, it is intractable to assess all
revisions. Instead, the challenge is to find a trade-off between measurement effort and
accuracy of estimating performance.

We devise a novel probabilistic active learning algorithm to accurately approximate the
performance history of a software system based on measurements of a specific workload
with accurately with few measurements [MAS19]. Our approach is not only able to provide
performance estimations for all revisions, but also reports an uncertainty measure alongside.
We use this uncertainty measure to decide for each revision whether our estimation is
sufficiently accurate or whether we need to refine the approximation by including more
measurements. To increase reliability where necessary, the algorithm selects and prioritizes
new revisions for performance measurement based on the reported uncertainty and relearns
the underlying Gaussian Process model.

Our evaluation is based on six real-world software systems from a variety of domains
(file compression, scientific computing, image processing). In a preliminary analysis, we
confirmed the prevalence of performance change points throughout their development
histories. Our experiments show that we can approximate performance histories with high
accuracy. We can use these to identify performance change points with few measurements.
1 Leipzig University, Institute of Computer Science, Augustusplatz 10, 04109 Leipzig, Germany, muehlbauer@
informatik.uni-leipzig.de
2 Universität des Saarlandes, Saarland Informatics Campus, Campus E1.1, 66123 Saarbrücken, Germany,
apel@cs.uni-saarland.de
3 Leipzig University, Institute of Computer Science, Augustusplatz 10, 04109 Leipzig, Germany, norbert.
siegmund@uni-leipzig.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:muehlbauer@informatik.uni-leipzig.de
mailto:muehlbauer@informatik.uni-leipzig.de
mailto:apel@cs.uni-saarland.de
mailto:norbert.siegmund@uni-leipzig.de
mailto:norbert.siegmund@uni-leipzig.de


2 Stefan Mühlbauer, Sven Apel, Norbert Siegmund

2 Approach. Based on a small initial sample of measured revisions, we approximate a
performance history following two repeated steps: (a) performance history estimation with
Gaussian Processes and (b) active revision sampling. Next, we give an overview of both
two steps:

Approximating Performance Histories.We use Gaussian Processes (GPs) for time series
data as a framework to model the performance history of a software system and obtain
respective estimations. In a nutshell, a GP can be conceived as a distribution over functions
(here: performance as a function of revisions). Evaluating the GP for a revision will yield a
Gaussian N(`, f) with a mean performance estimate ` and a variance measure f. The
variance f is lower around revisions for which we have actual performance measurements
at hand and can be interpreted as a measure of prediction accuracy. The shape of an
approximated performance history is determined by the GP’s covariance function – a
hyper parameter often called kernel. The kernel encodes further properties of the modeled
performance histories, such as whether to expect a continuous estimation.

Fig. 1: GP estimation of a performance history with
one change point (at revision 120) based on ten
measurements.

0 50 100 150 200 250
Time [revision id]

0

5

10

Pe
rfo

rm
an

ce

Posterior Mean
Ground Truth
Maximum Uncertainty

Posterior Uncertainty
Training Sample

Active Revision Sampling. At large, we
evaluate the GP for all revisions to obtain an
approximation as in Fig. 1 with regions of
low and high uncertainty indicating the need
for further measurements. The key idea of
our approach is the following: We let the
uncertainty measures guide the selection
of new revisions to measure performance
for. That is, we interpret the prediction un-
certainty as a measure of how much we
expect this measurement to improve overall
prediction accuracy. We repeat these two
model refinement steps until the minimum
uncertainty across all revisions falls below
a user-specified threshold.

We perform a series of experiments with the six real-world subject systems Xz, Lrzip,
Pillow, ultrajson, numpy and scipy. Across different covariance functions evaluated,
we obtained the most accurate approximations of performance histories in setups with the
Brownian kernel. From such approximations, we are able to identify and pinpoint change
points to individual revisions.

Bibliography
[MAS19] Mühlbauer, Stefan; Apel, Sven; Siegmund, Norbert: Accurate Modeling of Performance

Histories for Evolving Software Systems. In: Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, pp. 640–652,
2019.


