
Dimensions of Software Configuration
On the Configuration Context in Modern Software Development

ESEC/FSE 2020
8–13 November 2020

Norbert Siegmund
TWITTER@Norbsen

Leipzig University

Nicolai Ruckel
TWITTER@NicolaiRuckel

Bauhaus-Universität
Weimar

Janet Siegmund
TWITTER@JanetSiegmund

Chemnitz University of
Technology

Hi, my name is Nicolai Ruckel and welcome tomy presentation
about Dimensions of Software Configuration: On the Configu-
ration Context in Modern Software Development. This is a joint
work with Norbert Siegmund from Leipzig University and Janet
Siegmund from Chemnitz University of Technology.

https://www.twitter.com/Norbsen
https://www.twitter.com/NicolaiRuckel
https://www.twitter.com/JanetSiegmund

“A simple example [of configuration] is when I start
a Spring Boot application and this works standalone,
then it is totally trivial. As soon as I start bootingmul-
tiple of them, the traditional way would be to take
Spring Cloud. […] But then every Spring Boot appli-
cation taken into Spring Cloud has a properties file
with not 2 but 50 entries. All configuration.” — I1

1

I would like to start this talk with a quote from a software con-
sultant we talked to: “A simple example [of configuration] is
when I start a Spring Boot application and this works stan-
dalone, then it is totally trivial As soon as I start booting multi-
ple of them, the traditional way would be to take Spring Cloud.
[…] But then every Spring Boot application taken into Spring
Cloud has a properties file with not 2 but 50 entries. All con-
figuration.”

Configuration is Everywhere

2

Configuration is Everywhere

2

Configuration is Everywhere

2

Configuration is Everywhere

2

Configuration is Everywhere

2

Configuration is Everywhere

2

Configuration is Everywhere

2

Configuration is Everywhere

2

Like he said, configuration is an important topic in both
research and industry. For instance, we configure the IDE
in which we are writing the code, we configure libraries
and frameworks, we configure build files with diverse tools,
we configure the environment, in which our application is
executed, we configure database connections, ports, and
tests of our application. Recently, we configure the whole
CI/CD pipelines. This also involves the configuration of
the infrastructure—for instance via Kubernetes—on which our
software system is possibly distributed.

Configuration Can Mean Different Things

Test P1 P2 P3

1 0 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 1 1 0

Input variables and
parameters

Specification of experiment

Selection of features Optimizing non-functional
properties

2

Configuration Can Mean Different Things
Test P1 P2 P3

1 0 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 1 1 0

Input variables and
parameters

Specification of experiment

Selection of features Optimizing non-functional
properties

2

Configuration Can Mean Different Things
Test P1 P2 P3

1 0 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 1 1 0

Input variables and
parameters

Specification of experiment

Selection of features Optimizing non-functional
properties

2

Configuration Can Mean Different Things
Test P1 P2 P3

1 0 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 1 1 0

Input variables and
parameters

Specification of experiment

Selection of features

Optimizing non-functional
properties

2

Configuration Can Mean Different Things
Test P1 P2 P3

1 0 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 1 1 0

Input variables and
parameters

Specification of experiment

Selection of features Optimizing non-functional
properties

2

Despite its importance, there is no clear definition of the term
configuration and therefore each research paper assumes a
different context in which configuration is involved. Often,
this context depends on the domain and is just implied and
not directly specified. For example, in combinatorial testing
configuration refers to input variables and parameters and in
a machine-learning setting this would specify an experiment.
In software product lines, configuration refers to a selection
of features customizing the functional aspects of the software
variants. In other domains such as performance optimization,
configuration is instead focused on finding software configu-
ration that improves non-functional properties.

Consequences

• Results are
• difficult to compare and generalize

• not directly transferable to practice
• Research is often missing context

3

Consequences

• Results are
• difficult to compare and generalize
• not directly transferable to practice

• Research is often missing context

3

Consequences

• Results are
• difficult to compare and generalize
• not directly transferable to practice

• Research is often missing context

3

This means that it is difficult to compare or generalize the re-
sults from papers from different domains involving configura-
tion. Also, insights and results are often not directly transfer-
able to practice. In research the context is often not specified
at all. Without that context it is unclear how to use the results.

Example: Combinatorial Testing

• Aims at finding bugs in a program
• Uses different sets of inputs and options

Problems:
• Not all options are available at all time
• Availability of data depends on deployment
stage

• Knowledge about configurations is distributed
among stakeholders

4

Example: Combinatorial Testing

• Aims at finding bugs in a program

• Uses different sets of inputs and options
Problems:

• Not all options are available at all time
• Availability of data depends on deployment
stage

• Knowledge about configurations is distributed
among stakeholders

4

Example: Combinatorial Testing

• Aims at finding bugs in a program
• Uses different sets of inputs and options

Problems:
• Not all options are available at all time
• Availability of data depends on deployment
stage

• Knowledge about configurations is distributed
among stakeholders

4

Example: Combinatorial Testing

• Aims at finding bugs in a program
• Uses different sets of inputs and options

Problems:
• Not all options are available at all time

• Availability of data depends on deployment
stage

• Knowledge about configurations is distributed
among stakeholders

4

Example: Combinatorial Testing

• Aims at finding bugs in a program
• Uses different sets of inputs and options

Problems:
• Not all options are available at all time
• Availability of data depends on deployment
stage

• Knowledge about configurations is distributed
among stakeholders

4

Example: Combinatorial Testing

• Aims at finding bugs in a program
• Uses different sets of inputs and options

Problems:
• Not all options are available at all time
• Availability of data depends on deployment
stage

• Knowledge about configurations is distributed
among stakeholders

4

Let us consider the example of combinatorial testing. Combi-
natorial testing aims at finding bugs in a program by covering
different combinations of input parameters and options. How-
ever, not all options and settings are available at the same
time due to step-wise configuration process. Also, the avail-
ability of data for testing depends on the deployment stage
whereas knowledge about configuration settings is distributed
over a diverse set of stakeholders.

Goals

?

Type

?
Binding Time

?
Stakeholder

?
Task

??

?

?

?

5

Goals

?

Type

?
Binding Time

?
Stakeholder

?
Task

??

?

?

?

5

Goals

?

Type

?
Binding Time

?
Stakeholder

?
Task

??

?

?

?

5

Goals

?

Type

?
Binding Time

?
Stakeholder

?
Task

??

?

?

?

5

Goals

?

Type

?
Binding Time

?
Stakeholder

?
Task

??

?

?

?

5

In essence, we do not know which types of configuration exist, which binding times of
configuration values are prevalent for which types of configurations, which stakeholders
are involved in configuration, and what tasks during software development require con-
figuration. Furthermore, all these factors interact, but we do not know how. Thus, we set
out to shed light on which factors comprise configuration and how they interact.

Goals

• Find all aspects of configuration
• Provide framework for configuration to

• understand interacting aspects of
configuration

• guide future research
• derive implications in practice

6

Goals

• Find all aspects of configuration

• Provide framework for configuration to
• understand interacting aspects of
configuration

• guide future research
• derive implications in practice

6

Goals

• Find all aspects of configuration
• Provide framework for configuration to

• understand interacting aspects of
configuration

• guide future research
• derive implications in practice

6

Goals

• Find all aspects of configuration
• Provide framework for configuration to

• understand interacting aspects of
configuration

• guide future research
• derive implications in practice

6

Goals

• Find all aspects of configuration
• Provide framework for configuration to

• understand interacting aspects of
configuration

• guide future research

• derive implications in practice

6

Goals

• Find all aspects of configuration
• Provide framework for configuration to

• understand interacting aspects of
configuration

• guide future research
• derive implications in practice

6

Our goal is to frame the term configuration, find out all aspects
involved in configuration to have a common terminology. This
terminology helps with building a comprehensive model on
the aspects of configuration. We want to provide a framework
for researchers to place their work and studies into context
and derive what factors need to be considered.
This helps understand how research results apply to which in-
teracting aspects of configuration, including their limitations
and relevant circumstances in practice. Furthermore, it can
guide research of each isolated area to ask the right ques-
tions, and also how to combine these areas to increase practi-
cal relevance. For practitioners, the framework can be ameans
for orientation, such that stakeholders can place their current
configuration activity in the model and derive possible inter-
actions with other stakeholders and implications for them.

Semi-structured interviews with

eleven practitioners
• 4–22 years experience
• different domains

from 9 companies
• 40–460,000 employees
• located in Europe or
globally

7

To achieve that, we conducted semi-structured interviewswith
11 practitioners from nine companies coming from different
domains such as DevOps, microservices, or frontend with dif-
ferent levels of experience, ranging from 5 to 22 years.
We followed a grounded theory approach for the study. That
means, instead of focussing on specific questions we asked
general questions about configuration such as “What is config-
uration for you?” in the beginning and becamemore specific in
later questions and interviews. We transcribed the interviews
and analyzed the answers with a card-sorting approach.

Methodology

Interviews Study 1 Study 2

Complexity

Intent

Stakeholder

Stage

Type

Binding
Time

Artifact

Life
Cycle

Model of
Configuration

8

Afterwards, we looked into two other studies about configu-
ration to compare our results with theirs. With those insights,
we built a model of configuration.

Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

9

This model of configuration is the main result of our study. It
comprises different dimensions of configuration. After con-
sidering the additional literature we found eight different di-
mensions of configuration. These dimensions are stakeholder,
type, binding time, artifact, stage, life cycle, intent, and com-
plexity. Next, I will explain each dimension and their values.

Stakeholder Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“With the DevOps approach, requirements have
changed […]. […] they not only need to understand
the technology […], but also give recommendations
for configurations or apply configurations on their
own and take responsibility for them.” — I8

Values: Developer, Operator, DevOps, Technical User, End User

10

Stakeholder Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“With the DevOps approach, requirements have
changed […]. […] they not only need to understand
the technology […], but also give recommendations
for configurations or apply configurations on their
own and take responsibility for them.” — I8

Values: Developer, Operator, DevOps, Technical User, End User
10

Stakeholder Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“With the DevOps approach, requirements have
changed […]. […] they not only need to understand
the technology […], but also give recommendations
for configurations or apply configurations on their
own and take responsibility for them.” — I8

Values: Developer, Operator, DevOps, Technical User, End User
10

Let us first look at the stakeholder dimension. The involvement of differ-
ent stakeholders from different backgrounds in the configuration process
strongly influences how configuration is presented, validated, and main-
tained. We found stakeholders to be developers, operators, DevOps, tech-
nical users, and end users. Of course all of those stakeholder categories
can be further divided to show role specific aspects, for example frontend
or backend developers. For example operators configure underlying hard-
ware systems, operating systems or other infrastructure, while developers
create the configuration options and provide default values. With the rise
of DevOps the separation between those two groups has been blurred. One
of the interviewees said “With the DevOps approach, requirements have
changed […]. […] they not only need to understand the technology […], but
also give recommendations for configurations or apply configurations on
their own and take responsibility for them.”

Configuration Type Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“The domain-specific configuration helps us […] to faster provide and
customize functions to different customers. And technical configura-
tion can break many things if done wrong […].” — I7

Infrastructure Development Domain

HighCredit Card StandardBank transfer

Payment SecurityCatalogue Search

E-shop

Values: Development, Infrastructure, Domain

11

Configuration Type Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“The domain-specific configuration helps us […] to faster provide and
customize functions to different customers. And technical configura-
tion can break many things if done wrong […].” — I7

Infrastructure Development Domain

HighCredit Card StandardBank transfer

Payment SecurityCatalogue Search

E-shop

Values: Development, Infrastructure, Domain

11

Configuration Type Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“The domain-specific configuration helps us […] to faster provide and
customize functions to different customers. And technical configura-
tion can break many things if done wrong […].” — I7

Infrastructure

Development Domain

HighCredit Card StandardBank transfer

Payment SecurityCatalogue Search

E-shop

Values: Development, Infrastructure, Domain

11

Configuration Type Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“The domain-specific configuration helps us […] to faster provide and
customize functions to different customers. And technical configura-
tion can break many things if done wrong […].” — I7

Infrastructure Development

Domain

HighCredit Card StandardBank transfer

Payment SecurityCatalogue Search

E-shop

Values: Development, Infrastructure, Domain

11

Configuration Type Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“The domain-specific configuration helps us […] to faster provide and
customize functions to different customers. And technical configura-
tion can break many things if done wrong […].” — I7

Infrastructure Development Domain

HighCredit Card StandardBank transfer

Payment SecurityCatalogue Search

E-shop

Values: Development, Infrastructure, Domain

11

Configuration Type Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“The domain-specific configuration helps us […] to faster provide and
customize functions to different customers. And technical configura-
tion can break many things if done wrong […].” — I7

Infrastructure Development Domain

HighCredit Card StandardBank transfer

Payment SecurityCatalogue Search

E-shop

Values: Development, Infrastructure, Domain
11

The interviewees identified two main types of configuration: domain-
specific and technical configuration which we modeled in this dimension.
One practitioner described it as follows. “The domain-specific configura-
tion helps us […] to faster provide and customize functions to different cus-
tomers. And technical configuration can break many things if done wrong
and would need more attention.”
Technical configuration comprises infrastructure configuration and devel-
opment configuration, as the kind of tools, configuration artifacts, and con-
figuration effort differ substantially. Infrastructure configuration refers to
adjusting a software system to the underlying hardware and software, such
as connecting to the correct database system, using a specific port, or set-
ting environmental variables in a Docker file. Development configuration
as stated in the interviews involves setting up development tools, such as
IDEs, and build tools, the build and testing process, and automating the
deployment process to different stages.

Binding Time Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“Usually, microservices are relatively fast to deploy, so that,
most of the time, dynamic configuration is not needed. So, you
reconfigure something in a file and redeploy the container.” — I7

Values: Build, Deployment, Load Time, Run Time

12

Binding Time Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“Usually, microservices are relatively fast to deploy, so that,
most of the time, dynamic configuration is not needed. So, you
reconfigure something in a file and redeploy the container.” — I7

Values: Build, Deployment, Load Time, Run Time

12

Binding Time Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“Usually, microservices are relatively fast to deploy, so that,
most of the time, dynamic configuration is not needed. So, you
reconfigure something in a file and redeploy the container.” — I7

Values: Build, Deployment, Load Time, Run Time
12

Binding time refers to the event of binding a configuration op-
tion to a certain value. The binding time of an option varies
largely, from depending on build time for example in form of
build scripts, deployment time in form of configuration files,
to load- and run time. Hence, binding time strongly interacts
with the dimension’s stakeholder, type of configuration, and
configuration artifact. It also depends on the domain as one
of the interviewees stated: “Usually, microservices are rela-
tively fast to deploy, so that, most of the time, dynamic con-
figuration is not needed. So, you reconfigure something in a
file and redeploy the container.” Thinking about an appropri-
ate binding time of configuration options is an undervalued
task in academia and practice as most research papers don’t
specify this.

Configuration Artifact Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

#ifdef log
<XML>

...

</XML> DB

Setting 1

Setting 2

Setting 3

Setting 4

> ./app -o

“Configuration should be easy. It should have an easy format
that is also comprehensible and that is easily readable by
humans and has possibly few indirections.” — I7

Values: Source Code, Configuration File, Database, Command Line
Parameter, …

13

Configuration Artifact Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

#ifdef log
<XML>

...

</XML> DB

Setting 1

Setting 2

Setting 3

Setting 4

> ./app -o

“Configuration should be easy. It should have an easy format
that is also comprehensible and that is easily readable by
humans and has possibly few indirections.” — I7

Values: Source Code, Configuration File, Database, Command Line
Parameter, …

13

Configuration Artifact Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

#ifdef log
<XML>

...

</XML> DB

Setting 1

Setting 2

Setting 3

Setting 4

> ./app -o

“Configuration should be easy. It should have an easy format
that is also comprehensible and that is easily readable by
humans and has possibly few indirections.” — I7

Values: Source Code, Configuration File, Database, Command Line
Parameter, …

13

Nowadays, configurations are distributed in many artifacts
that exhibit their own structure, syntax, and semantic. This
is described by the configuration artifact dimension. Even
though different formats have different advantages and dis-
advantages, we found that simple configuration files, such as
properties or ini files are favored by our interviewees. They
said that “[configuration] should have an easy format that is
also comprehensible and that is easily readable by humans
and has possibly few indirections”.

Stage Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“So, you have your application, which you can config-
ure. Then you have your application in the environ-
ment, in which it is deployed, and there is an addi-
tional configuration that diverges.” — I3

Values: Development, Test, Pre-production, Production

14

Stage Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“So, you have your application, which you can config-
ure. Then you have your application in the environ-
ment, in which it is deployed, and there is an addi-
tional configuration that diverges.” — I3

Values: Development, Test, Pre-production, Production

14

Stage Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“So, you have your application, which you can config-
ure. Then you have your application in the environ-
ment, in which it is deployed, and there is an addi-
tional configuration that diverges.” — I3

Values: Development, Test, Pre-production, Production

14

Stage Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“So, you have your application, which you can config-
ure. Then you have your application in the environ-
ment, in which it is deployed, and there is an addi-
tional configuration that diverges.” — I3

Values: Development, Test, Pre-production, Production
14

The stage dimension describes that configuration happens in
different stages of the development process, such as devel-
opment or testing. Each stage usually describes a different
infrastructure environment of the running system, variables,
such as the JVM class path, and available resources, such as
database systems. Additionally, it is often strongly connected
to a stage in the CI/CD process, in which a software system is
deployed and executed. These stages lead to different config-
urations as one of the practitioners put it when he said: “So,
you have your application, which you can configure. Then you
have your application in the environment, in which it is de-
ployed, and there is an additional configuration that diverges.”
Typical stages include testing, pre-production, and produc-
tion.

Life Cycle Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“[…] I can customize my application server with a cer-
tain VM size. Which VM size is later actually applied,
we don’t know. […] we have tested it with this mini-
mum and that maximum. But the final configuration
is done by the Ops guys […]. And thus they own the
values and are responsible for them.” — I8

Values: Create, Maintain, Bind, Own, Deprecate, Remove

15

Life Cycle Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“[…] I can customize my application server with a cer-
tain VM size. Which VM size is later actually applied,
we don’t know. […] we have tested it with this mini-
mum and that maximum. But the final configuration
is done by the Ops guys […]. And thus they own the
values and are responsible for them.” — I8

Values: Create, Maintain, Bind, Own, Deprecate, Remove
15

Life Cycle Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“[…] I can customize my application server with a cer-
tain VM size. Which VM size is later actually applied,
we don’t know. […] we have tested it with this mini-
mum and that maximum. But the final configuration
is done by the Ops guys […]. And thus they own the
values and are responsible for them.” — I8

Values: Create, Maintain, Bind, Own, Deprecate, Remove
15

This dimension of life cycle describes the diverse aspects of
configuration options from creation and maintenance over
binding to deprecation, that is, all lifetime phases. One of
our interviewees told us “[…] I can customize my application
server with a certain VM size. Which VM size is later actually
applied, we don’t know. […] we have tested it with this min-
imum and that maximum. But the final configuration is done
by the Ops guys […]. And thus they own the values and are re-
sponsible for them.” That is, every stakeholder is responsible
for different lifetime phases and affected by the earlier ones.
Although some research has identified diverse problems when
introducing more and more options, it is often not clear that a
configuration option has its own life cycle, which starts in the
requirements phase when, for example, a new optional fea-
ture is planned.

Intent Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“Due to the team’s autonomy, it is desired that when
you have implemented a feature, you can take it
to production, but it is deactivated with a toggle.
But it is already present in production code. If all
teams have finished their [dependent] implementa-
tions, then each needs only to turn on the switch to
activate the feature.” — I9

Values: A/B Testing, Code Reuse, Knowledge Preservation, Distributed
Environment, …

16

Intent Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“Due to the team’s autonomy, it is desired that when
you have implemented a feature, you can take it
to production, but it is deactivated with a toggle.
But it is already present in production code. If all
teams have finished their [dependent] implementa-
tions, then each needs only to turn on the switch to
activate the feature.” — I9

Values: A/B Testing, Code Reuse, Knowledge Preservation, Distributed
Environment, …

16

Intent Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

“Due to the team’s autonomy, it is desired that when
you have implemented a feature, you can take it
to production, but it is deactivated with a toggle.
But it is already present in production code. If all
teams have finished their [dependent] implementa-
tions, then each needs only to turn on the switch to
activate the feature.” — I9

Values: A/B Testing, Code Reuse, Knowledge Preservation, Distributed
Environment, …

16

This dimension describes why configuration options are introduced in the
first place, which can have a strong effect on the other dimensions. We
found that often, options are introduced to tailor functional behavior, to
tailor non-functional behavior, and to reuse code. However, some inter-
viewees pointed out that there exist several more intents that trigger the
implementation of configuration options such as knowledge preservation
or to be able to make a software system runnable on an unknown environ-
ment. Another example is to coordinate the deployment of a new feature
that spans over multiple services like in the case of one practitioner who
said “Due to the team’s autonomy, it is desired that when you have imple-
mented a feature, you can take it to production, but it is deactivated with
a toggle. But it is already present in production code. If all teams have
finished their [dependent] implementations, then each needs only to turn
on the switch to activate the feature.”

Complexity Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

Values: Local Scope, Distributed Scope, High Dependency, Low Dependency,
No Dependency

What is a Feature?
A Qualitative Study of Features

in Industrial Software Product Lines

Thorsten Berger1, Daniela Lettner2, Julia Rubin3, Paul Grünbacher2, Adeline Silva4,
Martin Becker4, Marsha Chechik5, Krzysztof Czarnecki1

1University of Waterloo, 2Johannes Kepler University Linz, CD Lab MEVSS, 3Massachusetts Institute of Technology,
4Fraunhofer IESE, 5University of Toronto

ABSTRACT
The notion of features is commonly used to describe the
functional and non-functional characteristics of a system. In
software product line engineering, features often become the
prime entities of software reuse and are used to distinguish the
individual products of a product line. Properly decomposing
a product line into features, and correctly using features in
all engineering phases, is core to the immediate and long-
term success of such a system. Yet, although more than ten
different definitions of the term feature exist, it is still a very
abstract concept. Definitions lack concrete guidelines on how
to use the notion of features in practice.
To address this gap, we present a qualitative empirical

study on actual feature usage in industry. Our study cov-
ers three large companies and an in-depth, contextualized
analysis of 23 features, perceived by the interviewees as
typical, atypical (outlier), good, or bad representatives of
features. Using structured interviews, we investigate the
rationales that lead to a feature’s perception, and identify
and analyze core characteristics (facets) of these features.
Among others, we find that good features precisely describe
customer-relevant functionality, while bad features primarily
arise from rashly executed processes. Outlier features, serv-
ing unusual purposes, are necessary, but do not require the
full engineering process of typical features.

1. INTRODUCTION
Software Product Line Engineering (SPLE) approaches rely

on identifying and explicitly managing commonalities and
variabilities of a product portfolio. These commonalities and
variabilities are often captured in an abstract manner using
entities called features. The use of features is motivated
by the fact that customers and engineers often speak of
product characteristics in terms of features a product has
or delivers. A feature is usually defined as “a logical unit of
behavior specified by a set of functional and non-functional
requirements” [7] or “a distinguishable characteristic of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3613-0/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2791060.2791108

concept (system, component, etc.) that is relevant to some
stakeholder of the concept” [9]. In fact, many additional
definitions of the term feature can be found in the literature [1,
17, 32, 15, 25, 18, 23, 20, 8, 31].

Yet, companies still face difficulties deciding when to intro-
duce a feature, determining the right level of granularity for
a feature, and defining the aspects that should be taken into
consideration when engineering features. Without this knowl-
edge, using SPLE concepts and the numerous existing tools
for managing product line features is problematic. In fact,
all authors of this paper—when presenting feature-related
engineering or analysis techniques—are commonly faced with
the question: “What is a feature?”
In this paper, we aim to address this issue by empirically

investigating the experiences of three successful industrial
companies that develop software product lines (SPLs) and
explicitly manage features. We conducted a qualitative study
to elicit, understand, and describe features managed by the
companies. We also describe the companies’ perspective on
their successes and failures in managing features.
Our main goal is to improve the empirical understanding

of the notion of features in industry, by providing insights
into the range of real-world feature definitions and usages.
We rely on semi-structured interviews, whose design and
analysis was guided by two main research questions:

RQ1: What reasons cause companies to perceive a feature
as typical, atypical, good or bad? We study concrete examples
of features by asking our interviewees for typical, atypical
(outlier), good and bad exemplars, and by diving into the
reasons for such classification. Our intention was to be as
open as possible, trying to disambiguate existing perceptions
of features among our interviewees.
RQ2: What are important characteristics of features?

When discussing each feature, we asked the interviewees
to describe its different facets: intrinsic qualities of a feature,
such as its purpose within the software lifecycle or its binding
time. Using feature facets as the basic terminology allowed
us to structure the discussion, to compare the features across
companies, and to organize our findings.
We present first-hand opinions of industrial practitioners

on practices contributing to the development of features that
are perceived as typical, successful or failing. In addition
to narrative descriptions of features and their classification
rationales, we provide an in-depth cross-case analysis of
all the features. In summary, we contribute: (i) a set of
facets that can be used as a terminology for describing and
comparing features (Table 2); (ii) reasons (rationales) for

16

17

Complexity Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

Values: Local Scope, Distributed Scope, High Dependency, Low Dependency,
No Dependency

What is a Feature?
A Qualitative Study of Features

in Industrial Software Product Lines

Thorsten Berger1, Daniela Lettner2, Julia Rubin3, Paul Grünbacher2, Adeline Silva4,
Martin Becker4, Marsha Chechik5, Krzysztof Czarnecki1

1University of Waterloo, 2Johannes Kepler University Linz, CD Lab MEVSS, 3Massachusetts Institute of Technology,
4Fraunhofer IESE, 5University of Toronto

ABSTRACT
The notion of features is commonly used to describe the
functional and non-functional characteristics of a system. In
software product line engineering, features often become the
prime entities of software reuse and are used to distinguish the
individual products of a product line. Properly decomposing
a product line into features, and correctly using features in
all engineering phases, is core to the immediate and long-
term success of such a system. Yet, although more than ten
different definitions of the term feature exist, it is still a very
abstract concept. Definitions lack concrete guidelines on how
to use the notion of features in practice.
To address this gap, we present a qualitative empirical

study on actual feature usage in industry. Our study cov-
ers three large companies and an in-depth, contextualized
analysis of 23 features, perceived by the interviewees as
typical, atypical (outlier), good, or bad representatives of
features. Using structured interviews, we investigate the
rationales that lead to a feature’s perception, and identify
and analyze core characteristics (facets) of these features.
Among others, we find that good features precisely describe
customer-relevant functionality, while bad features primarily
arise from rashly executed processes. Outlier features, serv-
ing unusual purposes, are necessary, but do not require the
full engineering process of typical features.

1. INTRODUCTION
Software Product Line Engineering (SPLE) approaches rely

on identifying and explicitly managing commonalities and
variabilities of a product portfolio. These commonalities and
variabilities are often captured in an abstract manner using
entities called features. The use of features is motivated
by the fact that customers and engineers often speak of
product characteristics in terms of features a product has
or delivers. A feature is usually defined as “a logical unit of
behavior specified by a set of functional and non-functional
requirements” [7] or “a distinguishable characteristic of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3613-0/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2791060.2791108

concept (system, component, etc.) that is relevant to some
stakeholder of the concept” [9]. In fact, many additional
definitions of the term feature can be found in the literature [1,
17, 32, 15, 25, 18, 23, 20, 8, 31].

Yet, companies still face difficulties deciding when to intro-
duce a feature, determining the right level of granularity for
a feature, and defining the aspects that should be taken into
consideration when engineering features. Without this knowl-
edge, using SPLE concepts and the numerous existing tools
for managing product line features is problematic. In fact,
all authors of this paper—when presenting feature-related
engineering or analysis techniques—are commonly faced with
the question: “What is a feature?”
In this paper, we aim to address this issue by empirically

investigating the experiences of three successful industrial
companies that develop software product lines (SPLs) and
explicitly manage features. We conducted a qualitative study
to elicit, understand, and describe features managed by the
companies. We also describe the companies’ perspective on
their successes and failures in managing features.
Our main goal is to improve the empirical understanding

of the notion of features in industry, by providing insights
into the range of real-world feature definitions and usages.
We rely on semi-structured interviews, whose design and
analysis was guided by two main research questions:

RQ1: What reasons cause companies to perceive a feature
as typical, atypical, good or bad? We study concrete examples
of features by asking our interviewees for typical, atypical
(outlier), good and bad exemplars, and by diving into the
reasons for such classification. Our intention was to be as
open as possible, trying to disambiguate existing perceptions
of features among our interviewees.
RQ2: What are important characteristics of features?

When discussing each feature, we asked the interviewees
to describe its different facets: intrinsic qualities of a feature,
such as its purpose within the software lifecycle or its binding
time. Using feature facets as the basic terminology allowed
us to structure the discussion, to compare the features across
companies, and to organize our findings.
We present first-hand opinions of industrial practitioners

on practices contributing to the development of features that
are perceived as typical, successful or failing. In addition
to narrative descriptions of features and their classification
rationales, we provide an in-depth cross-case analysis of
all the features. In summary, we contribute: (i) a set of
facets that can be used as a terminology for describing and
comparing features (Table 2); (ii) reasons (rationales) for

16

17

Complexity Type

Stakeholder

Binding
Time

ArtifactStage

Intent

Life
Cycle

Complexity

Values: Local Scope, Distributed Scope, High Dependency, Low Dependency,
No Dependency

What is a Feature?
A Qualitative Study of Features

in Industrial Software Product Lines

Thorsten Berger1, Daniela Lettner2, Julia Rubin3, Paul Grünbacher2, Adeline Silva4,
Martin Becker4, Marsha Chechik5, Krzysztof Czarnecki1

1University of Waterloo, 2Johannes Kepler University Linz, CD Lab MEVSS, 3Massachusetts Institute of Technology,
4Fraunhofer IESE, 5University of Toronto

ABSTRACT
The notion of features is commonly used to describe the
functional and non-functional characteristics of a system. In
software product line engineering, features often become the
prime entities of software reuse and are used to distinguish the
individual products of a product line. Properly decomposing
a product line into features, and correctly using features in
all engineering phases, is core to the immediate and long-
term success of such a system. Yet, although more than ten
different definitions of the term feature exist, it is still a very
abstract concept. Definitions lack concrete guidelines on how
to use the notion of features in practice.
To address this gap, we present a qualitative empirical

study on actual feature usage in industry. Our study cov-
ers three large companies and an in-depth, contextualized
analysis of 23 features, perceived by the interviewees as
typical, atypical (outlier), good, or bad representatives of
features. Using structured interviews, we investigate the
rationales that lead to a feature’s perception, and identify
and analyze core characteristics (facets) of these features.
Among others, we find that good features precisely describe
customer-relevant functionality, while bad features primarily
arise from rashly executed processes. Outlier features, serv-
ing unusual purposes, are necessary, but do not require the
full engineering process of typical features.

1. INTRODUCTION
Software Product Line Engineering (SPLE) approaches rely

on identifying and explicitly managing commonalities and
variabilities of a product portfolio. These commonalities and
variabilities are often captured in an abstract manner using
entities called features. The use of features is motivated
by the fact that customers and engineers often speak of
product characteristics in terms of features a product has
or delivers. A feature is usually defined as “a logical unit of
behavior specified by a set of functional and non-functional
requirements” [7] or “a distinguishable characteristic of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3613-0/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2791060.2791108

concept (system, component, etc.) that is relevant to some
stakeholder of the concept” [9]. In fact, many additional
definitions of the term feature can be found in the literature [1,
17, 32, 15, 25, 18, 23, 20, 8, 31].

Yet, companies still face difficulties deciding when to intro-
duce a feature, determining the right level of granularity for
a feature, and defining the aspects that should be taken into
consideration when engineering features. Without this knowl-
edge, using SPLE concepts and the numerous existing tools
for managing product line features is problematic. In fact,
all authors of this paper—when presenting feature-related
engineering or analysis techniques—are commonly faced with
the question: “What is a feature?”
In this paper, we aim to address this issue by empirically

investigating the experiences of three successful industrial
companies that develop software product lines (SPLs) and
explicitly manage features. We conducted a qualitative study
to elicit, understand, and describe features managed by the
companies. We also describe the companies’ perspective on
their successes and failures in managing features.
Our main goal is to improve the empirical understanding

of the notion of features in industry, by providing insights
into the range of real-world feature definitions and usages.
We rely on semi-structured interviews, whose design and
analysis was guided by two main research questions:

RQ1: What reasons cause companies to perceive a feature
as typical, atypical, good or bad? We study concrete examples
of features by asking our interviewees for typical, atypical
(outlier), good and bad exemplars, and by diving into the
reasons for such classification. Our intention was to be as
open as possible, trying to disambiguate existing perceptions
of features among our interviewees.
RQ2: What are important characteristics of features?

When discussing each feature, we asked the interviewees
to describe its different facets: intrinsic qualities of a feature,
such as its purpose within the software lifecycle or its binding
time. Using feature facets as the basic terminology allowed
us to structure the discussion, to compare the features across
companies, and to organize our findings.
We present first-hand opinions of industrial practitioners

on practices contributing to the development of features that
are perceived as typical, successful or failing. In addition
to narrative descriptions of features and their classification
rationales, we provide an in-depth cross-case analysis of
all the features. In summary, we contribute: (i) a set of
facets that can be used as a terminology for describing and
comparing features (Table 2); (ii) reasons (rationales) for

16

17

Although there are many aspects contributing to the configuration’s com-
plexity, there are certain values that need special attention. So far, we have
not explicitly addressed the scope of a configuration with respect to soft-
ware modules and artifacts. The interviewees of Berger et al. reported on
configuration that affects only individual modules and configuration that
is distributed among different modules, frameworks, services, and other
artifacts. Moreover, an option or entire configuration might be dependent
on other options and configurations at different degrees. For example, the
presence and valid values of an option might depend on the configuration
of its cloud infrastructure or which customer owns the product. In such
cases, the complexity increases and interacts with other dimensions, such
as the configuration artifacts, stage, and type. So, choosing the right arti-
fact for a specific type of configuration depends on the complexity of the
configuration.

Application of the Model

18

To show our model in action, we provide a model of con-
figuration for 18 research papers selected from three related
research fields: configuration engineering, software product
lines, performance optimization, testing, and configuration er-
rors. Here, I want to talk about the insights in software product
lines and performance optimization.

Software Product Lines

Stakeholder

Developer

Intent

Code Reuse
Unknown Environment
Functional

Life Cycle

Create
Maintain
Bind

Type

Domain
Technical

Binding Time

Build Time

Artifact

Preprocessor Code
Configuration Code
Source Code
Configuration File

• No DevOps

• No removing or deprecation of options

• Effect of different binding times on implementation
techniques

• No modern staged deployments and cloud infrastructures

• No complexity analysis with respect to SPL
implementation techniques

19

Software Product Lines
Stakeholder

Developer

Intent

Code Reuse
Unknown Environment
Functional

Life Cycle

Create
Maintain
Bind

Type

Domain
Technical

Binding Time

Build Time

Artifact

Preprocessor Code
Configuration Code
Source Code
Configuration File

• No DevOps

• No removing or deprecation of options

• Effect of different binding times on implementation
techniques

• No modern staged deployments and cloud infrastructures

• No complexity analysis with respect to SPL
implementation techniques

19

Software Product Lines
Stakeholder

Developer

Intent

Code Reuse
Unknown Environment
Functional

Life Cycle

Create
Maintain
Bind

Type

Domain
Technical

Binding Time

Build Time

Artifact

Preprocessor Code
Configuration Code
Source Code
Configuration File

• No DevOps

• No removing or deprecation of options

• Effect of different binding times on implementation
techniques

• No modern staged deployments and cloud infrastructures

• No complexity analysis with respect to SPL
implementation techniques

19

Software Product Lines
Stakeholder

Developer

Intent

Code Reuse
Unknown Environment
Functional

Life Cycle

Create
Maintain
Bind

Type

Domain
Technical

Binding Time

Build Time

Artifact

Preprocessor Code
Configuration Code
Source Code
Configuration File

• No DevOps

• No removing or deprecation of options

• Effect of different binding times on implementation
techniques

• No modern staged deployments and cloud infrastructures

• No complexity analysis with respect to SPL
implementation techniques

19

Software Product Lines
Stakeholder

Developer

Intent

Code Reuse
Unknown Environment
Functional

Life Cycle

Create
Maintain
Bind

Type

Domain
Technical

Binding Time

Build Time

Artifact

Preprocessor Code
Configuration Code
Source Code
Configuration File

• No DevOps

• No removing or deprecation of options

• Effect of different binding times on implementation
techniques

• No modern staged deployments and cloud infrastructures

• No complexity analysis with respect to SPL
implementation techniques

19

Software Product Lines
Stakeholder

Developer

Intent

Code Reuse
Unknown Environment
Functional

Life Cycle

Create
Maintain
Bind

Type

Domain
Technical

Binding Time

Build Time

Artifact

Preprocessor Code
Configuration Code
Source Code
Configuration File

• No DevOps

• No removing or deprecation of options

• Effect of different binding times on implementation
techniques

• No modern staged deployments and cloud infrastructures

• No complexity analysis with respect to SPL
implementation techniques

19

Software Product Lines
Stakeholder

Developer

Intent

Code Reuse
Unknown Environment
Functional

Life Cycle

Create
Maintain
Bind

Type

Domain
Technical

Binding Time

Build Time

Artifact

Preprocessor Code
Configuration Code
Source Code
Configuration File

• No DevOps

• No removing or deprecation of options

• Effect of different binding times on implementation
techniques

• No modern staged deployments and cloud infrastructures

• No complexity analysis with respect to SPL
implementation techniques 19

Let’s start with software product lines. We analyzed several papers in the
area of software product line research to see which dimensions and val-
ues are covered. The model shows that those papers mainly focused on
developers, which is natural as mostly implementation techniques are dis-
cussed. However, it appears that the new trend of DevOps seems to not
have reached yet research in this area. Also not surprisingly is that most
papers focus around code reuse and functional customization of software
systems. What is missing in this context is (i) evolution of product lines,
especially how to deprecate and remove configuration options (life cycle),
(ii) different binding times and their effect on implementation techniques,
(iii) modern staged deployments and cloud infrastructures for product line
development (stage and type), and (iv) complexity analysis with respect to
product line implementation techniques.

Performance Optimization

Stakeholder

Developer
User

Intent

Non-functional

Life Cycle

Bind

Type

Domain
Technical

Binding Time

Build Time
Load Time

Artifact

Configuration File

Complexity

High Dependencies
Low Dependencies
No Dependencies

• Unknown Stage
• Infrastructure ignored
• Reconfiguration and evolution not considered
• No DevOps or Ops

20

Performance Optimization

Stakeholder

Developer
User

Intent

Non-functional

Life Cycle

Bind

Type

Domain
Technical

Binding Time

Build Time
Load Time

Artifact

Configuration File

Complexity

High Dependencies
Low Dependencies
No Dependencies

• Unknown Stage

• Infrastructure ignored
• Reconfiguration and evolution not considered
• No DevOps or Ops

20

Performance Optimization

Stakeholder

Developer
User

Intent

Non-functional

Life Cycle

Bind

Type

Domain
Technical

Binding Time

Build Time
Load Time

Artifact

Configuration File

Complexity

High Dependencies
Low Dependencies
No Dependencies

• Unknown Stage
• Infrastructure ignored

• Reconfiguration and evolution not considered
• No DevOps or Ops

20

Performance Optimization

Stakeholder

Developer
User

Intent

Non-functional

Life Cycle

Bind

Type

Domain
Technical

Binding Time

Build Time
Load Time

Artifact

Configuration File

Complexity

High Dependencies
Low Dependencies
No Dependencies

• Unknown Stage
• Infrastructure ignored
• Reconfiguration and evolution not considered

• No DevOps or Ops

20

Performance Optimization

Stakeholder

Developer
User

Intent

Non-functional

Life Cycle

Bind

Type

Domain
Technical

Binding Time

Build Time
Load Time

Artifact

Configuration File

Complexity

High Dependencies
Low Dependencies
No Dependencies

• Unknown Stage
• Infrastructure ignored
• Reconfiguration and evolution not considered
• No DevOps or Ops

20

Next, we look at performance optimization. The papers we
chose here all take the same context: A user or developer con-
figures a software system via a configuration file either at load
or build time. None of the papers made the environment ex-
plicit. It is unknown at which stage the performance was op-
timized and the infrastructure is not taken into account even
though it can have a profound influence on performance. With
the restriction on binding configuration options, reconfigura-
tion or software evolution is not considered. Moreover, per-
formance is mainly driven by the underlying hardware. The
persons that are responsible for configuring this hardware—
namely DevOps and Ops people—should also be considered
to make the results more practical.

Best Practices

21

In addition to our model we found best practices for dealing
with configuration in the industry.

Avoiding Configuration Errors

22

Avoiding Configuration Errors

“Validation is part of the meta-configuration. […] So,
there is a kind of management model, that is, a con-
figuration option is not only the name of the option,
but also the data type, a validation, or where does
this configuration value come from, so cross relations
to other configuration values.” — I11

22

Avoiding Configuration Errors

“Real program code can have [errors], but there are
more possibilities to verify things, also already at
build time. Maybe that is a possibility to address this
problem, that you may try to validate or check the
configuration as part of building the software. […]
Everything that can be done as early as possible in
the process, validation checking, helps to solve these
problems.” — I11

22

Avoiding Configuration Errors

“I don’t think that my users [of the configuration ed-
itor] know what makes sense to configure and what
not. So, it is my task to find out how to present the
configuration options to the users in a way that it is
as easy as possible to configure things.” — I11

22

Avoiding Configuration Errors

• explicit modeling of options
• favor value binding at build time
• simplify configuration

22

To avoid configuration errors, some companies implement some kind of validation for
their configuration files. One practitioner stated: “Validation is part of the meta-
configuration. […] So, there is a kind of management model, that is, a configuration option
is not only the name of the option, but also the data type, a validation, or where does this
configuration value come from, so cross relations to other configuration values.”
To make best use of this validation, they apply a fail-fast strategy. They said: “Real pro-
gram code can have [errors], but there are more possibilities to verify things, also already
at build time. Maybe that is a possibility to address this problem, that you may try to
validate or check the configuration as part of building the software. […] Everything that
can be done as early as possible in the process, validation checking, helps to solve these
problems.”
Another strategy is to simplify the configuration. One practitioner that worked on a con-
figuration editor said: “I don’t think that my users [of the configuration editor] know what
makes sense to configure and what not. So, it is my task to find out how to present the
configuration options to the users in a way that it is as easy as possible to configure
things.”
To summarize, the practitioners suggested three main practices to avoid configuration
errors: explicit modeling of options to make validation possible, favour value binding at
build time over configuration at runtime to find errors fast and simplifying the configura-
tions.

Dealing with Distributed Configuration

“A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the
low level things.” — I9

• dedicated platform teams
• naming conventions
• configuration files next to
the code

• reviewing configuration in
code reviews

23

Dealing with Distributed Configuration
“A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the
low level things.” — I9

• dedicated platform teams
• naming conventions
• configuration files next to
the code

• reviewing configuration in
code reviews

23

Dealing with Distributed Configuration
“A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the
low level things.” — I9

• dedicated platform teams
• naming conventions
• configuration files next to
the code

• reviewing configuration in
code reviews

23

Dealing with Distributed Configuration
“A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the
low level things.” — I9

• dedicated platform teams

• naming conventions
• configuration files next to
the code

• reviewing configuration in
code reviews

23

Dealing with Distributed Configuration
“A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the
low level things.” — I9

• dedicated platform teams
• naming conventions

• configuration files next to
the code

• reviewing configuration in
code reviews

23

Dealing with Distributed Configuration
“A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the
low level things.” — I9

• dedicated platform teams
• naming conventions
• configuration files next to
the code

• reviewing configuration in
code reviews

23

Dealing with Distributed Configuration
“A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the
low level things.” — I9

• dedicated platform teams
• naming conventions
• configuration files next to
the code

• reviewing configuration in
code reviews

23

To deal with distributed configurations, for example in microservice ar-
chitectures, a lot of the companies had dedicated teams to configure the
platforms. At one company a developer told us: “A sister team of ours
mainly does this [Kubernetes configuration]. They provide the basis for us
and provide the low level things.” This way, they had a clear separation of
responsibilities and allowed the developers of individual services to focus
on the configuration of their service without worrying about the integra-
tion to the infrastructure. Also some practitioners told us that there was
a general naming convention for configuration options to make them con-
sistent company-wide. They emphasized that it is important to have the
configuration files next to the code they configure in the same repository
to let it be tracked by the version control system. In addition, configuration
files get reviewed in pull requests the same way that code gets reviewed.

Performance Engineering

24

Performance Engineering

“Performance is really difficult. What does
performance mean? Response time of re-
quests? Fromwhich requests? Resource con-
sumption counts as well.” — I8

24

Performance Engineering

“There is a team that does nothing else than
performance testing. They have different se-
tups at hand […] and every new function
becomes eventually part of a performance
test.” — I11

24

Performance Engineering

• Metrics for performance are not defined
• Performance tests for every new feature
necessary

24

We have not seen many solutions to performance optimization despite its
relevance. Performance engineers run stress tests and other related mea-
surements, but with the main goal of finding good default values rather
than optimized settings for individual customers. Interestingly, for the
domain of performance engineering we could not find any best practices
which is interesting since it seems to be an important topic in most of
the companies. One reason could be that the term itself is—just like
configuration—not clearly defined as stated by an interviewee who said:
“Performance is really difficult. What means performance? Response time
of requests? From which requests? Resource consumption counts as well.”
While they would be interested in finding optimal configurations for in-
dividual customers or use cases, they only apply techniques like stress
testing to find good default values. “There is a team that does nothing
else than performance testing. They have different setups at hand […] and
every new function becomes eventually part of a performance test.”

Lessons Learned

• Configuration becomes increasingly important
• Configuration lacks proper grammar and type
system

• Configuration is a multi-person, multi-artifact,
and multi-technology activity

25

Lessons Learned

• Configuration becomes increasingly important

• Configuration lacks proper grammar and type
system

• Configuration is a multi-person, multi-artifact,
and multi-technology activity

“[Configuration] becomes ever more important, because we
always thrive for writing less code and better reaching our
goals via configuration.” — I8

25

Lessons Learned

• Configuration becomes increasingly important
• Configuration lacks proper grammar and type
system

• Configuration is a multi-person, multi-artifact,
and multi-technology activity

“If I mix up some characters in my configuration, then there is
no compiler that complains about that but everything goes
through and later I have to find out that there is some
character missing in the user name.” — I11

25

Lessons Learned

• Configuration becomes increasingly important
• Configuration lacks proper grammar and type
system

• Configuration is a multi-person, multi-artifact,
and multi-technology activity

“That reaches a certain level of complexity where I don’t know
what happens if I turn a switch anymore. What happens with
the configuration? Is it still active […]? Or does it get
overwritten by […] other mechanisms?” — I11

25

To summarize, I would like to present the lessons we have learned during our study. First,
configuration becomes more and more important since: “[…] we always thrive for writ-
ing less code and better reaching our goals via configuration.” That is, instead of imple-
menting everything themselves, developers tend to use third-party frameworks and tools
which have to be configured.
Configuration often has no well-defined grammar and type system like source code has,
which can lead to problems. An interviewee told us the following example: “If I mix up
some characters in my configuration, then there is no compiler that complains about that
but everything goes through and later I have to find out that there is some character
missing in the user name.”
It is also a highly cross-cutting activity which affects almost all stakeholders of a soft-
ware system, is defined in various artifacts which themselves are distributed in different
environments. These influences are not always known to each stakeholder as one of the
practitioners said. They said: “That reaches a certain level of complexity where I don’t
know what happens if I turn a switch anymore. What happens with the configuration? Is
it still active […]? Or does it get overwritten by […] other mechanisms?”

Additional material:
https://github.com/AI-4-SE/
Dimensions-of-Software-Configuration

Pre-print:
https://sws.informatik.uni-leipzig.de/
wp-content/uploads/2020/05/Configuration.pdf

Norbert Siegmund
TWITTER@Norbsen

Nicolai Ruckel
TWITTER@NicolaiRuckel

Janet Siegmund
TWITTER@JanetSiegmund

This concludes my talk about the dimensions of software con-
figuration. You can find our questionnaire, the transcripts, and
additional material in our project repository at GitHub.
If you have any question, feel free to ask us during the inter-
active conversations or send us a message directly.
Thank you for your attention and I hope you enjoy the rest of
the conference.

https://github.com/AI-4-SE/Dimensions-of-Software-Configuration
https://github.com/AI-4-SE/Dimensions-of-Software-Configuration
https://sws.informatik.uni-leipzig.de/wp-content/uploads/2020/05/Configuration.pdf
https://sws.informatik.uni-leipzig.de/wp-content/uploads/2020/05/Configuration.pdf
https://www.twitter.com/Norbsen
https://www.twitter.com/NicolaiRuckel
https://www.twitter.com/JanetSiegmund

