
Dimensions of Software Configuration
On the Configuration Context in Modern Software Development

Norbert Siegmund
Leipzig University

Germany

Nicolai Ruckel
Bauhaus-Universität Weimar

Germany

Janet Siegmund
Chemnitz University of Technology

Germany

ABSTRACT
With the rise of containerization, cloud development, and continu-
ous integration and delivery, configuration has become an essential
aspect not only to tailor software to user requirements, but also
to configure a software system’s environment and infrastructure.
This heterogeneity of activities, domains, and processes blurs the
term configuration, as it is not clear anymore what tasks, artifacts,
or stakeholders are involved and intertwined. However, each re-
search study and each paper involving configuration places their
contributions and findings in a certain context without making
the context explicit. This makes it difficult to compare findings,
translate them to practice, and to generalize the results. Thus, we
set out to evaluate whether these different views on configuration
are really distinct or can be summarized under a common umbrella.

By interviewing practitioners from different domains and in dif-
ferent roles about the aspects of configuration and by analyzing
two qualitative studies in similar areas, we derive a model of config-
uration that provides terminology and context for research studies,
identifies new research opportunities, and allows practitioners to
spot possible challenges in their current tasks. Although our in-
terviewees have a clear view about configuration, it substantially
differs due to their personal experience and role. This indicates
that the term configuration might be overloaded. However, when
taking a closer look, we see the interconnections and dependencies
among all views, arriving at the conclusion that we need to start
considering the entire spectrum of dimensions of configuration.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Software creation and
management.

KEYWORDS
Dimensions of software configuration, variability, configuration
management and life cycle, developer study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409675

ACM Reference Format:
Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund. 2020. Dimensions
of Software Configuration: On the Configuration Context in Modern Soft-
ware Development. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.3409675

1 INTRODUCTION
Software configuration is a hot topic in research and industry [34].
Despite its importance, there are many different views about what
aspects comprise configuration and how they interact. For example,
in combinatorial testing [19, 25], configuration is usually seen as a
set of input variables and parameters to a program that needs to be
tested; in software product lines [2, 7], configuration corresponds
to a selection of features or configuration options for generating a
program variant with a desired functional behavior; in optimiza-
tion [32, 38], the set of configuration options and parameters are
regarded as configuration for optimizing non-functional properties;
and in the deployment process [34], configuration is a means to
define where, when, what, and how to deploy software artifacts.

There are many more areas related to configuration, such as
virtualization, provisioning of software, and machine learning that
all come with their own objectives, problems, and best practices.
This diversity might be one reason why a holistic view on config-
uration does not exist in software engineering research. Another
reason might be that there is no obvious connection between con-
figuration activities in these different fields. However, the way
software is developed has changed substantially in recent years
due to innovations in tools, architectures, and processes, such as
virtualization and containerization [8, 44], continuous integration
and delivery [9], DevOps [13, 36], microservices and serverless
systems [1, 24], cloud infrastructure [3], and deployment automa-
tion [11]. All these areas involve a non-trivial amount of configura-
tion, and, more importantly, highly interact with each other, which
one interviewee describes this way: These developments framed
the term infrastructure as code, which can be interpreted as codify-
ing the configuration of the infrastructure and residing it next to
the application’s code [12]. “With the recent trends in architecture,
such as microservices, it [configuration] is becoming more important.
[. . .] the more distributed, and, thus, complex systems are, the more
complex the problems get. So, I use tools to catch these problems. A
simple example is when I start a Spring Boot application and this
works standalone, then it is totally trivial. As soon as I start booting
multiple of them, the traditional way would be to take Spring Cloud.
[. . .] But then every Spring Boot application taken into Spring Cloud
has a properties file with not 2 but 50 entries. All configuration. All of
them are there to configure the tools that are supposed to make life eas-
ier. Hence, there is an exponential explosion of configuration options,

https://doi.org/10.1145/3368089.3409675
https://doi.org/10.1145/3368089.3409675

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund

which all can break. And this is why I would say it [configuration] is
becoming more important.”I1

This high degree of interaction requires researchers to overcome
the isolated view of configuration, and instead integrate different
views of configuration into research, making transfer to a realistic
setting easier. For example, combinatorial testing aims at finding
bugs in a program by covering a diverse set of combinations of input
parameters and options. However, we found in our interviews that
not all options and settings are available at the same time due to a
step-wise configuration process. Also, the availability of data for
testing depends on the deployment stage whereas knowledge about
configuration settings is distributed over a diverse set of stakehold-
ers. Hence, combinatorial testing needs to take this diversity into
account to be more generally applicable in practice.

In addition to a limited applicability, research results could even
be misleading when not considering the entire context of config-
uration. Consider, for example, the vast amount of research on
performance optimization of configurable software systems, such
as sampling relevant configurations [17], accurate performance pre-
diction [22], or finding performance-optimal configurations [26].
These techniques usually consider only a static environment with
a constant workload, which rarely occurs in practice due to virtual-
ization and containerization. Having different stages with different
data, and with different (virtualized) hardware makes a perfor-
mance model hardly transferable, even when using transfer learn-
ing to reuse knowledge in different settings (e.g., [14, 15]): Often,
performance-influencing factors are even unknown, such as op-
tional JVM flags when running a Java application in a container.

In essence, we do not know which types of configuration ex-
ist, which binding times of configuration values are prevalent for
which types of configurations, which stakeholders are involved in
configuration, and what tasks during software development require
configuration. Furthermore, all these factors interact, but we do
not know how. Thus, we set out to shed light on which factors
comprise configuration and how they interact. This work is the
first attempt to frame the term configuration into a comprehensive
model by interviewing a diverse set of practitioners about their
experience with configuration. By considering developers, testers,
consultants, DevOps, and cloud software architects, we obtain a
broad view on configuration, ranging from software configuration
via feature toggles over technical configuration via environment
variables to infrastructure and development configuration via cloud
settings and continuous integration and delivery (CI/CD) customiza-
tions. By further analyzing two qualitative studies in a meta study,
we broaden the scope and saturate on the values and dimensions
of configuration. We found that configuration is a complex task
cutting across the entire software life cycle, involves a diverse set
of stakeholders, impacts infrastructure and development activities,
and is, most importantly, a highly context-sensitive process.

In building a comprehensive model about aspects of configura-
tion, we provide a framework for researchers to place their work
and studies into context and derive what factors need to be con-
sidered, as we show in Section 4. This helps to understand how
research results apply to what interacting aspects of configuration,
including their limitations and practical relevant circumstances.
Furthermore, it can guide research of each isolated area to ask the
right questions, and also how to combine these areas to increase

practical relevance. For practitioners, the framework can be ameans
for orientation, such that stakeholders can place their current con-
figuration activity in the model and derive possible interactions
with and implications for other stakeholders.

Scope and Limitations. Clearly, this work is not exhaustive, as
there are many domains, such as embedded systems, operating
systems, intelligent systems, and cloud applications that all have
their own perspective on configuration. We focus on enterprise
applications, cloud applications, and rich clients, thereby addressing
a large and relevant field. Our performed mixed method approach
using a literature study of related work substantially widens the
scope and validates our findings. Further, we selected a wide variety
of stakeholders to view configuration through different lenses.

2 METHODOLOGY
Building a model on configuration requires a sound methodological
approach, as a single study is insufficient to explore the diverse per-
spectives on configuration. Our overall methodological approach
follows grounded theory [40], which is rooted in social science for
theory building based on the analysis of mostly qualitative data,
such as interviews, questionnaires, and literature analyzes.

Contrary to common research practice in software engineering,
grounded theory starts with a single question and gathering qualita-
tive data. Questions for interviews are not driven by related studies
not to be biased in a certain direction. Instead, the collected data is
reviewed and analyzed continuously, such that interview questions
are adapted during the course of developing ideas, concepts, and
a model in the end. The rationale of using grounded theory here
is that developing a model about configuration requires starting
with an unbiased view to cover as many aspects of configuration
as possible rather than starting with related studies that already
frame the picture of configuration.

We used a mixed method approach: First, we conducted several
interviews to explore as many aspects as possible that involve
configuration (see Section 2.1), based on which we developed an
initial model of configuration. Here, we extracted 7 dimensions
with 32 values in total. Second, we analyzed two closely related
papers to (i) validate our findings and (ii) extend our model, yielding
1 additional dimension and 15 new values. Finally, we selected 16
additional research papers (18 in total) from different domains that
involve the aspect of configuration to (iii) verify the applicability
of our model and (iv) identify gaps in current research leading to
new research opportunities. Next, we describe our methodology in
detail, starting with the interviews.

2.1 Qualitative Study
Participants. To understand the view of practitioners on config-

uration, we conducted semi-structured interviews with 11 practi-
tioners (cf. Table 1) from 9 different companies ranging from small
(dozens) over medium (hundreds) to large (hundreds of thousands
of employees): codecentric AG, Salesforce, Red Hat, Xceptance,
4Soft, Regiocom, REWE Digital, Accenture, and an e-commerce
company. The companies are distributed both locally in Europe and
globally. With this broad sample, our results are relevant for many
software companies and practitioners.

Dimensions of Software Configuration ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Overview of our interviewees (ID) including a sum-
mary of their experience (Exp.) in years and expertise.

ID Exp. Role Domains
I1 10 y Consultant, Senior Developer DevOps, Fullstack
I2 14 y Developer Backend, Microservice
I3 22 y Developer, Software Architect DevOps, Microservice
I4 15 y Developer, Test Engineer Backend
I5 11 y Senior Developer Backend, Microservice
I6 7 y Software Architect Backend, Microservice
I7 6 y Team Lead Fullstack
I8 19 y Cloud Foundation Architect Backend
I9 5 y Developer Backend
I10 7 y Consultant, Tester, Developer Fullstack
I11 20 y Senior Software Engineer Frontend

Interview. We designed and continuously refined several inter-
view questions to guide us in exploring aspects of configuration.1.
They can be divided into five categories. The first category collects
background information on developers (summarized in Table 1).
The remaining categories cover several aspects of configuration.
We started with general questions regarding configuration, so that
we captured the intuitive understanding of practitioners’ view on
configuration. This way, we could shed light on how practitioners,
depending on their role, view configuration, which helped us to
understand the different dimensions that affect configuration. Then,
we asked practitioners about their every-day work with configura-
tion and to describe challenges when working with configuration.
This allowed us to determine where practitioners struggle. Finally,
we asked about best practices and areas for improvement by includ-
ing hypothetical questions. This way, we could identify relevant
questions, giving guidance on configuration research.

Execution and Analysis. Each interview was conducted with one
practitioner and the first two authors, except on one occasion where
we interviewed two practitioners at once. Each interview lasted
about 90 minutes and was recorded and transcribed (available on
the project’s website). Based on the transcription, we applied a
card-sorting approach to identify higher-order topics [10].

The card-sorting process has been conducted by all authors of
the paper to include an unbiased view during concept generation.
The process was as follows: We conducted the card sorting partici-
pant by participant and question by question. Every author read
through a question and made notes, such as mentioned artifacts,
problems during configuration, involved stakeholders, or guidelines
and processes in the company. After these individual readings and
marked higher-order topics, we compared and discussed our find-
ings. After reaching consensus that all higher-order topics for one
response have been identified, we moved on to the next question.

Open questions and missing information were discussed to pos-
sibly phrase a new question in the upcoming interviews, following
grounded theory. For the annotations, we quickly saw categories
emerging, such as artifacts, the intent of the configuration, or when

1The entire final set of questions and all material are available at:
https://github.com/AI-4-SE/Dimensions-of-Software-Configuration

configurations are made. We could phrase questions for most of
these categories (which later end up in the dimensions), such as
what is configured,when it is configured, how the configuration pro-
cess is handled, etc. Since answers to these questions reappeared in
every interview, we came to dimensions (questions/categories) with
different values (different answers to the same question). Moreover,
we could also spot interactions among dimensions, such as, ‘Who
configures what at which state?’ This process has been performed
for all interviews. Afterwards, we went through all transcripts again
to make sure that dimensions, artifacts, and interactions that we
extracted from later interviews have not been missed in the earlier
interviews. Since three authors performed this task first individu-
ally per question (to not bias a personal opinion) and afterwards
discussing and comparing the results, the reported dimensions and
artifacts are an agreement. The only (rare) cases with disagreement
were when it was not clear whether to further split dimensions. For
instance, the intent dimension is rather broad and could be divided
into smaller, multiple dimensions, such as one for functional and
one for non-functional configuration. However, this would have
cluttered the model with too many dimensions, of which a large
portion may never be relevant. Instead, we chose a modeling ap-
proach where each dimension is possibly always involved when it
comes to software configuration.

2.2 Meta Study
To validate the findings of the interviews, extend the scope, and
show how to incorporate previous work into a holistic model, we
analyzed two papers that reported on related interviews from practi-
tioners, fromwhich we can infer additional aspects of configuration.
The first two authors individually read each paper carefully and
made annotations/cards, similar to the card-sorting phase. We then
compared the annotations with the dimensions and values already
found. Despite a large agreement, we found additional values (due
to the increased scope of these papers) and also the new complexity
dimension caused by the implementation-specific and technical
interviews in [5]. Interestingly, for the remaining 16 papers, we
found no new dimension or value, which substantially increases
our confidence to have covered a substantial spectrum of config-
uration aspects. Next, we give a short summary about the papers
and explain their relevance.

Study 1: What is a Feature? Berger and others conducted a study
about the meaning, usage, and interpretation of the term “fea-
ture” [5]. They interviewed six stakeholders (developers, product
managers, architects) of three companies (Keba, Opel, Danfoss) to
understand their use of features in devising configurable software
systems and product lines, how they model features, how features
arise during development, and how they are used. As features are a
central element of configuration, the study represents an important
source of possible dimensions of configuration.

To relate the results of the study to our configuration model,
two authors of this paper read carefully through the interview
responses (summarized in Table 2 in the paper by Berger and others).
Contrasting to our terminology, Berger and others summarized their
responses based on “facets of features”. For each facet, we identified
whether it is comparable to an existing dimension from our own
interviews. If we could not find a matching dimension, we discussed

https://github.com/AI-4-SE/Dimensions-of-Software-Configuration

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund

Stakeholder

Type

Binding
Time

Artifact

Stage

Life Cycle

Intent

Complexity
Prod

Pre-Prod

Test

Dev

Code Reuse

A/B Testing

Unknown Environment

Non-functional

Functional

Domain
Technical

Infrastructure
Development

Build
Deployment

Load Time

Run Time

Devs

DevOps
Ops

Technical User Create

Maintain

Bind

Own

Deprecate

Remove

Database

Config File
Config Code

Source Code

Feature Model

Product Map
Spreadsheet

GUI

Environment Variable

No dependency

Low dependency

High dependency

Local Scope

Distributed Scope

Preprocessor Code
Directory Service

Reduced Testing Effort

Distributed Development

...

...

Knowledge Preservation

End User

...

Figure 1: Dimensions of configurations and their values, en-
coded by origin of study: our studyS0 as black, [5]S1 as blue,
and [34]S2 as red.

whether the facets represent a new dimension of configuration.
Moreover, when finding a matching dimension, we verified whether
the values of a dimension has already been covered by our interview
questions. If not, we added a new value. In Section 3, we report
which dimensions and values have been added this way.

Study 2: Software Configuration Engineering in Practice. Sayagh
and others conducted a qualitative study about the engineering
process of run-time configuration options in industry [34]. They
identify challenges and best practices about creating, maintaining,
and using configuration options across different software artifacts.
As another result, they extracted nine activities related to config-
uration, which partially map to our dimensions of configuration.
Moreover, they identified 24 recommendations for improving soft-
ware quality with respect to configuration and 22 challenges that
developers face.

The study has been conducted in three phases: First, the authors
interviewed 14 software engineers from 13 companies (government
to banking system vendors) to obtain common topics of configu-
ration activities using card sorting [31]. Next, they conducted a
survey to extend the scope and refine the answers, yielding 229
responses. Finally, they performed a literature survey on the identi-
fied activities to complement the obtained recommendations with
academic approaches, for which they also used card sorting. We
went through the responses and identified activities and match
them with the previously revised model to possibly extend it.

3 RESULTS: A MODEL ON CONFIGURATION
We call the extracted higher-order topics playing part in config-
uration dimensions of configuration. We discuss each dimension
and explain their meaning based on the interviews. Based on our
research methodology, we iteratively explore more dimensions and
values by taking related interviews and survey answers of the two
studies (Section 2.2) into account. Due to space limitations, we re-
port only on the final model (not intermediate steps), but highlight

at the beginning of each dimension the study from which their
values originate with the following subscript: our study S0, [5] S1,
and [34] S2. To give an overview of our model, we summarize the
origin of the dimensions of configurations and their values from
the different sources of our analysis in Figure 1.

Formalization. To apply our model to giving context to research
studies or exploring new research opportunities, we formalize the
dimensions and values as a directed acyclic graph (DAG). Annotated
vertices represent dimensions of our model, where an annotation
represents a value, as shown in Figure 2 (Page 9). This way, a single
dimension can occur multiple times in the graph with different val-
ues. Edges represent interactions between two dimensions and are,
thus, directed. For example, if we analyze how end users (stakeholder
dimension) configure (bind an option in the life cycle dimension)
for the purpose of performance optimization (intent dimension)
considering only run-time options (binding time dimension), we
will obtain the following graph:

Stakeholder

End user

Intent

Non-functional

Life Cycle

Bind

Binding Time

Runtime

From this graph, we can immediately see possible generaliza-
tions and limitations by comparing it with our model in Figure 1.
For instance, we cannot know how end users would configure
load-time options or what the influence of different artifacts is on
the way how end users optimize their software systems. Interest-
ingly, also the type of configuration has not been specified, so it is
unclear whether the users configure options more related to the
application’s domain or more related to infrastructure or techni-
cal issues. In our literature analysis from 18 papers, we saw such
examples and show them on our supplementary website. Often,
unspecified dimensions lead to ambiguity in interpreting results
and general questions about transferring research to industry. Our
model helps in identifying ambiguity and missing dimensions in
research involving configuration.

3.1 Stakeholder
Stakeholder values

DeveloperS0,1,2, DevOpsS0,2,
OpsS0,2, UserS2

This dimension describes ev-
eryone who deals with con-
figuration. Traditionally, there
are three groups of stakehold-
ers with clearly separated roles: Users configure a software system
according to their needs, leading to the development of software
product lines and configurable software systems [2].Operations peo-
ple administrate, maintain, and configure the underlying hardware
system, the operating system, firewalls, and other environmen-
tal and infrastructure related systems. The configuration here has
mainly the goal to optimize non-functional properties, such as secu-
rity, reliability, and resource usage. Finally, developers may provide
an initial configuration that should work for most scenarios and
usually create configuration options in the first place. All of those
stakeholder categories can be further divided to show role-specific
aspects.

With the DevOps age, more stakeholders are affected by configu-
ration, and the clear separation between these groups of stakehold-
ers blurred. Most prominently, the role of DevOps has blurred the
former strongly separated tasks of software development, software

Dimensions of Software Configuration ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

maintenance, and operation. Now, a developer may be responsi-
ble for configuring the environment of the software system (e.g.,
using Docker) and the infrastructure (e.g., database connection,
microservice deployment, resource management, and network com-
munication), as one interviewee stated: “With the DevOps approach,
requirements have changed [. . .] I know older developers, who need
to change their mindset that they now own their run time environ-
ment. So, they not only need to understand the technology and what
happens there, but also give recommendations for configurations or
apply configurations on their own and take responsibility for them.”I8

Consequences: The involvement of different stakeholders from
different backgrounds in the configuration process strongly influ-
ences how configuration is presented, validated, and maintained.
Thinking about configuration in terms of stakeholders will arrive
at variability models whose presence of configuration options may
change depending on the stakeholder: “I give some thoughts about
what is required, what is maybe even optional, and what should be
hidden from the end customer. And in some way, I do the same for the
internal stakeholders. He configures the things that are hidden but
also for him, there is the question of what should he know, what should
he query from others or get from somewhere else, what is optional,
what should be avoided, or what is a deprecated feature that you can
configure in theory, but we never want to activate it again. So, we
want to have an interface description for a configuration to follow it
in a way that I know how it works.”I9

Thus, when working with configurations, be it in research (e.g.,
for performance improvements) or industry (e.g., planning which
artifacts are used for an option and how to change the values),
practitioners need distinct mechanisms how stakeholder-dependent
configurations can be modeled, validated, and stored in a suitable
way, which interacts with other dimensions of configuration and
has not yet been addressed properly by the literature.

3.2 Type of Configuration
Type values

DevelopmentS0,1,2,
TechnicalS0,1,2,
InfrastructureS0,1,2, DomainS0,1,2

Types of configuration de-
scribes what should be config-
ured. The interviewees identi-
fied two main types of config-
uration: “The domain-specific configuration helps us [. . .] to faster
provide and customize functions to different customers. And technical
configuration can break many things if done wrong and would need
more attention.”I7.

A domain-specific configuration targets the software system from
an end user perspective to tailor the system according to user’s
(mostly functional) requirements and often via feature toggles at
run time. By contrast, technical configuration targets mainly the
environment of a system or its deployment and hosting process
(e.g., infrastructure, system libraries, and development tools). The
increasing trend of virtualized hardware and the increasing com-
plexity of systems has emphasized the need for such a technical con-
figuration. Interestingly, technical configuration involves different
stakeholders (e.g., developer, DevOps, Ops) compared to domain-
specific configuration and usually is performed on different artifacts
(e.g., automation scripts, Docker files, Kubernetes templates), and
at different binding times (e.g., compile time, deployment time).

Technical configuration comprises infrastructure configuration
and development configuration, as the kind of tools, configuration
artifacts, and configuration effort differ substantially. Infrastructure
configuration refers to adjusting a software system to the under-
lying hardware and software, such as connecting to the correct
database system, using a specific port, or setting environmental
variables in a Docker file. Development configuration as stated in
the interviews involves setting up development tools, such as IDEs,
and build tools (e.g., implementing a Maven or Gradle build script),
the build and testing process (e.g., using Jenkins as the continuous
integration servers), and automating the deployment process to
different stages (e.g., testing or production) and to different envi-
ronments (e.g., cloud providers or cloud infrastructures).

Consequences: The different types of configuration have their
own properties: “With a technical configuration, you define it once
and then it is automatically deployed and will be bound at appli-
cation start at latest, whereas the domain-specific configuration is
virtually in constant alteration depending on how the user changes
it.”I6 These properties, which are mainly interactions with other
dimensions of configuration, require their own tools, practices, and
training. Thus, it is surprising that the literature usually does not
differentiate or clearly articulate types of configuration [21, 28, 34].
For instance, configuration in the product lines community refers
to deriving functional different variants of a software system[7]
(i.e., domain-specific configuration). But, technical configuration
influences domain-specific configuration and vice versa (cf. Sec-
tion 4). So, in a realistic setting, it is difficult to ignore other types of
configurations. Instead, when conducting experiments in realistic
settings, these confounding factors need to be accounted for.

We also found that the terminology is not well standardized and
may change depending on the stakeholder’s perspective. That is,
an infrastructure configuration can mean configuring the server
infrastructure (as we have defined it), but also the development con-
figuration: “I usually work on infrastructure configuration at project
level. That means I configure a Jenkins job, make sure that all the
post and pre steps are called at the right time. [. . .] This is, however,
way easier than a technical configuration, that is, the configuration
of the project itself, because there are simply more open parameters.”I4
Thus, a well-defined terminology that is also accepted by practition-
ers can avoid confusion and help to separate configuration tasks,
which then can be handled by different expert groups. The distinc-
tion within technical configuration is useful also in other regards
as one interviewee mentioned that it would be a best practice to
unify the development configuration within a team (e.g., where
to put curly brackets), which is hardly possible for infrastructure
configuration. But, assuming that all such (coding) guidelines can
be fully encoded in an IDE configuration, it becomes part of the
software configuration process, similar to infrastructure as code,
but on a different level of abstraction. Thus, clarifying the type of
configuration is a suitable way to organize responsibilities and to
introduce conventions avoiding more configuration.

3.3 Binding Time
Binding Time values

BuildS0,1, DeploymentS0, Load
TimeS0,1, Run TimeS0,1,2

Binding time refers to the
event of binding a configura-
tion option to a certain value.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund

The binding time of an option varies largely, depending on build
time (e.g., in form of build scripts), deployment time (e.g., in form
of configuration files), to load- and run time (e.g., in form of prop-
erties files, databases, command-line arguments, or user interfaces).
Hence, binding time strongly interacts with the dimension’s stake-
holder, type of configuration, and configuration artifact: “Often, we
[configure] domain-specific things at compile time. That are mostly
properties files, sometimes also derived classes. But we have also the
possibility to change certain settings during run time. So, we have
outsourced some configurations to configuration files and databases
and there you can change things at run time. And then, we have a
third [binding time]: during deployment. This is mainly in the di-
rection of containers and Kubernetes. There, we try to extract the
configuration files from the actual programming artifacts to put them
next [to the code]. And during deployment, we use then a specific
version of configuration.”I7

Consequences: Thinking about an appropriate binding time of
configuration options is an undervalued task in academia and prac-
tice. We found that binding time is not fixed and should be changed
when technical solutions make it possible: “Usually, microservices
are relatively fast to deploy, so that, most of the time, dynamic con-
figuration is not needed. So, you reconfigure something in a file and
redeploy the container.”I2 Understanding which binding time is suit-
able for what type of configuration and which are the pros and cons
in the context of the other dimensions of configuration deserves
more research. Nevertheless, as identified best practice, binding
time should generally be as early as possible to enable better vali-
dation and follow the principle of fail fast.

3.4 Configuration Artifact
Artifact values

Source CodeS0,1, Configura-
tion CodeS0,1,2, Configuration
FileS0,1,2, DatabaseS0,1,2, Com-
mandline parameterS2, Environ-
ment VariableS2 Preprocessor
CodeS1, Directory ServiceS1,2,
Feature ModelS1, SpreadsheetS1,
Product MapS1, GUIS1

This dimension describes how
configuration manifests in de-
velopment artifacts. Nowa-
days, configurations are dis-
tributed in many artifacts
that exhibit their own struc-
ture, syntax, and semantic. We
found that simple configura-
tion files, such as properties
files or ini files, are favored by our interviewees: “Configuration
should be easy. It should have an easy format that is also compre-
hensible and that is easily readable by humans and has possibly few
indirections. Frankly, I don’t want to create a programming language
for configuration.”I11. The main argument is that properties files are
easy to understand and change. An improved version are XML files,
as “I have something like a schema behind, which tells me ’there are
only numbers allowed’ and you enter a string. Or, this tag is allowed
only for these children, but this element is wrongly structured.”I11,
which helps to validate configurations.

The more complex artifacts are build scripts, container descrip-
tions (e.g., Docker files), and automation scripts (e.g., Ansible play-
books or Jenkins files), which we call configuration code.2 An often
stated problem is that they have their own syntax and semantics,

2The artifact is often referred to infrastructure as code, which is, however, only a
subset of all codified configuration and automation processes that we comprise under
this term.

but no proper type system:“In Kubernetes, I have difficulties to cope
with all the YAML files. I can’t see a structure behind them.”I11 Thus, a
stakeholder needs to learn by conventions how to write automation
files and Docker files, but has no type checker or other validation
tool to verify whether the defined configuration is feasible.

Consequences: There is a clash of interests that affects the choice
of artifacts: understandability and ease of use versus expressive-
ness. Developers prefer configuration artifacts that are easy to
read, manipulate, and comprehend. The ideal form seems to be
key-value pairs with additional comments on the meaning, value
ranges, and effect of the configuration option as well as on possible
interactions with other options. Moreover, an improved variant
with user-defined types of configuration options to limit and vali-
date configuration values (e.g., as done with XML schema) reduces
the danger of configuration errors and eases maintenance.

Unfortunately, since modern architectures are often distributed
among several services, nodes, hardware systems, and require a
complex environment configuration with deployment dependen-
cies and infrastructure constraints, configuration is transforming
into a programming task. That is, configuration must respect sev-
eral conditions and has not just a single value binding, but requires,
for example, executing scripts or triggering other deployment pro-
cesses. Hence, to describe several configuration conditions, expres-
siveness is needed. It is unclear whether and how both worlds (un-
derstandability and expressiveness) can be unified. But, it is clear
that, with each new tool or framework that brings its own semantic,
the learning curve grows, the maintenance effort increases, and
inconsistencies across multiple configuration artifacts rises [33].

3.5 Stage
Stage values

DevS0,1,2, TestS0,1,2, Pre-
ProductionS0,2, ProductionS0,1,2

This dimension describes that
configuration happens in dif-
ferent stages of the develop-
ment process, such as develop-
ment or testing. Each stage usually describes a different infrastruc-
ture environment of the running system, variables, such as the
JVM class path, and available resources, such as database systems.
Additionally, it is often strongly connected to a stage in the CI/CD
process, in which a software system is deployed and executed. Typ-
ical stages include testing, pre-production, and production.

Consequences: Environments differ for the same software sys-
tems, depending on the stages in which the software is currently
running. This has severe consequences, as configuration must
change depending on the stage and environment: “So, you have
your application, which you can configure. Then you have your ap-
plication in the environment, in which it is deployed, and there is an
additional configuration that diverges.”I3. This implies two things:
First, we need a structured way to apply configurations only for
specific environments (similar to the findings of [34]). Second, we
need a way to describe which options are valid and relevant in what
environment. These are two novel aspects that lack explicit support
in current variability modeling languages and tools [16, 27].

A further aspect is that the same configuration option can be
bound via different configuration artifacts. For example, environ-
ment variables can be passed to the CI server via configuration of

Dimensions of Software Configuration ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

a Docker file, via configuration of the CI server itself, or via con-
figuration of automation scripts (e.g., with Puppet or Ansible). So,
the question arises which stakeholder is responsible for which arti-
fact and what configuration should be bound by which mechanism
and at which binding time? Furthermore, who owns the values
when present multiple times and which artifact precedes others? “I
believe systems are complex to configure where the configuration is
split among different layers and one layer overwrites another one and
at the end, you can overwrite something at the command line. This
arrives at a degree of complexity where you don’t exactly know when
I turn on this switch, what happens in the end [. . .]?”I11

Stages influence, however, the configuration process in other
ways. Later stages often involve secret keys and credentials to hide
other confidential information. Usually, developers have no access
to these configuration values, so an entirely new mechanism of
deploying a configuration and obtaining configuration values (e.g.,
from a vault), has to be implemented and tested. This is one of the
reasons why configuration errors might not be caught before a
system is in production. Similarly, stages differ in the amount and
quality of input and testing data. For instance, the pre-production
stage is usually the first stage in which a software system can be
tested with realistic data, but at the cost of longer testing runs and
higher hardware provisioning cost. Also, at this stage, performance
tests provide closer aligned results with the production deployment.
Hence, the environment as well as the stage have a crucial impact
not only on the configuration values, but also on the mechanisms
and tools of creating, deploying, and maintaining configurations.
This needs more attention from researchers.

3.6 Configuration Life Cycle
Life Cycle values

CreateS0,1,2, MaintainS1,2,
BindS0,1,2, OwnS0, DeprecateS2,
RemoveS0

This dimension describes the
diverse aspects of configura-
tion options from creation and
maintenance over binding to
deprecation, that is, all lifetime
phases. Although some research has identified diverse problems
when introducing more and more options [45], it is often not clear
that a configuration option has its own life cycle, which starts in
the requirements phase when, for example, a new optional feature
is planned. Contrary to the literature, we found in our interviews
that configuration options are usually introduced in an ad-hoc man-
ner, which decreases maintainability and increases configuration
complexity.

The life cycle continues with the value binding. That is, at a
certain point in time, an option is bound to a certain value. At this
dimension, the binding time is not so interesting, but more impor-
tantly is the question who owns the value and for how long is the
configuration valid. Owning means that there is a designated stake-
holder who is able and responsible for reconfiguring (rebinding)
an option’s value or maintaining the option’s code or functional
representation. So, the stakeholder who initially sets a configura-
tion value might not be responsible in the future to change or test
it: “The developers say ’I can customize my application server with a
certain VM size.’. Which VM size is later actually applied, we don’t
know. So, we say ‘Okay, we have tested it with this minimum and that
maximum. For what lays in between, we can give guidance where

we can say for that many products in a shop, you would need the
value a bit higher [. . .]. But, the final configuration is done by the
Ops guys who say ’I know that this is this specific customer, we have
measured [it], and these are the performance metrics, so we change
the configuration.’ And thus they own the values and are responsible
for them. [. . .] This stakeholder takes responsibility for the toggling
and the others must live with it.”I8

The validity of a configuration with respect to time—and not
constraints between other options or the environment—has only
recently been in the focus of research [42]. However, with the trend
of on-premise solutions, serverless, and functions and software as
a service, such timely restricted configurations, be it of technical
or domain-specific nature, will become more relevant and require
novel solutions in configuration maintenance and evolution. The
developers need to know about such aspects to be able to prepare
the system for invalid states that can occur at run time without an
explicit trigger of a configuration process.

Consequences: We need to model and provide support for the
life cycle of individual configuration options—an aspect neglected
so far in research. With an explicit modeling, we can better track
why options are introduced (see next dimension), who binds the
option’s value and who owns the option’s value. Knowing the stake-
holders of these two separate phases (binding and owning) allows
for better tool support and validation of the configuration values
(e.g., developers provide reasonable default values and operations
people adapt them to end user requirements) and enables short
communication paths due to clear responsibilities. Furthermore,
an explicit option life cycle allows for thinking about and planning
the deprecation of configuration options, a still unsolved problem
in practice [45]. Thus, we should focus on methods that support
the removal of variability, and such addressing variability with life
cycle information can be a means for it. Interesting, the described
software configuration engineering process in [34] considers the
whole development process whereas we found that we need to
additionally consider the individual options’ own life cycle.

3.7 Intent for Configuration
Intent values

A/B TestingS0, Code ReuseS0,1,
Knowledge PreservationS0,
Reduced Testing EffortS0, Dis-
tributed EnvironmentS0,1,2,
Unknown EnvironmentS0,1,2, Non-
FunctionalS0,1,2, FunctionalS0,1,2

This dimension describes why
configuration options are in-
troduced in the first place,
which can have a strong effect
on the other dimensions. We
found that often, options are
introduced to tailor functional
behavior (“When I write [code], I as a developer want to make it con-
figurable. With a feature toggle, I want to be able to switch between
code path left and right, such that I can pull the handbrake or un-
lock specific things for just one customer.”I9), to tailor non-functional
behavior, and to reuse code.

However, as the interviewees pointed out, there are also other
intents that trigger the implementation of configuration options:
knowledge preservation (“I don’t know what I’ve done two weeks
ago, and this is why I make something configurable, something that I
need to somehow adjust anyway.”I1), “the analysis of a program at
run time”I11 (e.g., via logging levels), A/B testing, and distributed
development of features (“Due to the team’s autonomy, it is desired

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund

that when you have implemented a feature, you can take it to pro-
duction, but it is deactivated with a toggle. But it is already present
in production code. If all teams have finished their [dependent] im-
plementations, then each needs only to turn on the switch to activate
the feature.”I3). Interestingly, options are also introduced to enable
comparability of testing results in an evolving software system.
The rationale is that changes to a code base need to be controlled
during testing: “If you not automate [configuration] such that you
have the same preconditions to execute a test, then you already have
lost, because the results you will get are not comparable.”I4

Another reason for introducing configuration is the need to run
an application in an unknown environment: “We just don’t know
how the data centers are structured [in which we deploy our software].
There could be a firewall between the App server and the database
for one customer and for all others not. For one customer, we tried to
configure the database so that the same load distributes on three hard
disks. And one week later, we have a customer with three different
data centers with high availability and no downtime. [. . .]”I8

Configuration options are also introduced to reduce testing effort.
At first, this seems contradictory to the observations of combinato-
rial testing and the exponential growth of configurations. But when
we know that options have only a limited scope, we may need to
test only a few new configurations and not all combinations. The
alternative to new options would be, for example, having different
branches which all would need to be tested. This scales far worse,
as one interviewee explained: “In every JDK [version], they improve
the garbage collector. With those improvements, the memory man-
agement changes, and we just don’t know which consequences this
has. That is, every change is a different behavior and this changes
the performance. Now, when we don’t know the right values yet, we
make this configurable. So, we tell our test engineer ’Can you test all
configurations?’ instead of ’Here are ten branches [to test].”’I8

Consequences: The interviewees described many new intentions
for configuration, showing that the reasons for integrating new
configuration options are more diverse than tailoring functional
or non-functional properties of an application. Knowing these in-
tentions can help in developing tools to either control for these
options, to avoid introducing them altogether, or to remove them
again from the code base (given their appropriate documentation).

3.8 Configuration Complexity
Complexity values

Local scopeS1, Distributed
scopeS1, High dependencyS1, Low
dependencyS1, No dependencyS1

Although there are many as-
pects contributing to the con-
figuration’s complexity, there
are certain values that need
special attention. So far, we
have not explicitly addressed the scope of a configuration with
respect to software modules and artifacts. The interviewees of [5]
reported on configuration that affects only individual modules (i.e.,
with a local scope) and configuration that is distributed among dif-
ferent modules, frameworks, services, and other artifacts (i.e., global
scope). Moreover, an option or entire configuration might be depen-
dent on other options and configurations at different degrees. For
example, the presence and valid values of an option might depend
on the configuration of its cloud infrastructure or which customer

owns the product. In such cases, the complexity increases and in-
teracts with other dimensions, such as the configuration artifacts,
stage, and type. So, choosing the right artifact for a specific type of
configuration depends on the complexity of the configuration.

Consequences: The literature and most configuration tools con-
centrate on local configuration. However, when having multiple
users at different levels of the software (e.g., platform developer ver-
sus plug-in developer versus end user), a configuration might affect
very different modules, developed, maintained, and deployed by
different stakeholders, vendors, and customers. Research on multi
software product lines has analyzed some isolated aspects of depen-
dent and distributed configuration [29, 43], but have not taken into
account most aspects of configuration, such as non-functional opti-
mization. But, it is important to fully understand how far-reaching
a single configuration is to estimate the impact of configuration
choices on the whole software ecosystem.

3.9 Interactions
Interactions can be expressed through connections and paths in the
model. Different paths connected with the same nodes (i.e., values
of dimensions) represent different interactions. For example, con-
trary to many product line studies, we found that modeling only the
domain variability is insufficient to derive a valid program variant.
Our interviewees argued that often, technical configuration deter-
mines domain-specific configuration and vice versa: “Infrastructure
must partially provide configuration via environmental variables to
the application. This is a clear interaction point. Then there is always
the question of how do these environmental variables come to the
infrastructure.[. . .] And then there is interaction among different in-
frastructure components and eventually the application.”I6 Hence,
the graph not just shows the presence of configuration-dependent
dimensions and values, but how they interact, incorporated in the
order of the path.

The importance of interactions for identifying possible miscon-
ceptions in current research can be seen be the following example:
“There are different teams that handle [configuration]. So, I can’t say
’I’ll introduce a property and now I want to know from all configura-
tions where my software resides where was it configured from whom,
how, and why.”I8. So, we need to relax the current assumption in
research of one variability model with a dedicated domain engineer
who configures the system. Instead, when modeling a graph for a
future study on variability models, it should contain several paths
from stakeholders to, for instance, intent, configuration artifact,
and compile time to make the different interactions explicit, and
design a study based on this structure. In essence, our model can
provide an important tool for study and research design in the
area of software configuration to decide upfront on which aspects
researchers concentrate on and which aspects might be neglected
by the current design.

4 APPLICATION OF THE MODEL
To show our model in action, we provide a model of configuration
for 18 research papers selected from three related research fields:
configuration engineering, software product lines, performance op-
timization, testing, and configuration errors. We discuss two papers
used in the meta study in detail, give a high-level discussion about

Dimensions of Software Configuration ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 2: Configuration context of the qualitative study by
Berger and others [5]. Boxes depict dimensions of configura-
tion and their concrete values. Arrows depict analyzed and
discovered interactions among the dimensions. As can be
seen, the configuration context differs between companies.

two research areas, and provide the models for all papers on our
supplementary web page. Moreover, as an important contribution
to practice, we extract key best practices from our interviews.

4.1 Application to Research
To demonstrate how useful our model is when applied to specific
studies, we provide the context for the papers of our meta study.
Moreover, we discuss on a higher level some insights we gained
when analyzing related literature in the area of software product
lines and performance optimization.

Meta Study: Configuration Engineering. Figure 2 depicts the con-
figuration context of the study by Berger and others [5]. In their
study, the authors interviewed three different companies which re-
sulted in different contexts. For example, Keba interviewees report
about end users who bind configuration options at load and deploy-
ment time without going into detail about the type of configuration
or the intent of the configuration. Others talk about different de-
velopers roles and how they implement configuration options to
address unknown environments and how different artifacts lead
to different binding times. However, they talk only about domain
configuration and not technical configuration (e.g., about how to
configure the infrastructure).

The important insight is, however, that the answers of different
companies lead to entirely different contexts, which is not appar-
ent in the paper and can lead to a more focused and balanced
discussion about the findings. For instance, Opel interviewees are
more interested in configuration options for functional tailoring
or adaptation to a distributed environment and, unlike Keba, they
use feature models as configuration artifacts and consider only
build-time configuration. So, by just comparing these two contexts
we can conclude that answers may not align due to different con-
figuration intents, different implementation artifacts, and binding
times. Moreover, we can further frame the study and the reported
results in addressing mostly domain configuration without stages,
with limited considered artifacts and binding times. So, the answers

to the authors’ research question might severely change when con-
sidering technical configuration, run time configuration, or options
introduced for non-functional optimization or testing.

Stakeholder

Developer
Manager
Researcher
Architect

Intent

Functional
Non-functional
Unknown environment

Level of
Dependencies

High
~High

Life Cycle

Create
Maintain
Own
~Remove

Binding Time

Runtime

Artifact

Configuration file
Configuration code
Database
Environment variables
Directory service

Figure 3: Configu-
ration context of
Sayagh and oth-
ers [34].

The study by Sayagh and others on config-
uration in practice represents (shown in Fig-
ure 3) gives a more unifying context [34], pos-
sibly because the authors provided a summa-
tive report and did not differentiate among
companies. Here, we see that no end users are
in the context although also non-functional
configuration has been studied, which is con-
trary to what we found in the performance-
optimization papers, which mostly focus on
end user configuration. Moreover, the binding
time is limited to only run time, which makes
a stark contrast to Berger and others.

Interestingly, they considered multiple en-
vironments, a large portion of an option’s life
cycle, and many configuration artifacts, which
makes this study themost comprehensive ones
regarding aspects of configuration. By making
the context with our model clear, it is now easy
to see where the study should be extended in
the future and how this compares to previous
work as Berger and others. For the first time,
we can provide a quick overview about ad-
dressed dimensions of configuration and see
(with missing configurations) where a study
give more information or lacks context.

Software Product Lines (SPLs). We analyzed several papers in
the area of software product line (SPL) research. The results are
comprised in the figure below—a per paper context can be found at
our complementary web page. The model shows that product line
research mainly focuses on developers, which is natural as mostly
implementation techniques are discussed. However, the new trend
of DevOps seems to not have reached yet research in this area.
Also not surprisingly is that most papers focus around code reuse
and functional customization of software systems. What is missing
in this context is (i) evolution of product lines, especially how to
deprecate and remove configuration options (life cycle), (ii) different
binding times and their effect on implementation techniques, (iii)
modern staged deployments and cloud infrastructures for product
line development (stage and type), and (iv) complexity analysis with
respect to product line implementation techniques.

In relation to our interview, one aspect became apparent: Modern
software development is hardly separable between domain-specific
and infrastructure aspects: “Certainly, when you activate a certain
function, it often requires a specific component service and so that a
system can use a service, it needs to be configured in that way. For
example, email verification [as domain-specific functionality] and for
this exists a service for email verification. And when you activate this
function, you need to provide a configuration such that the service

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund

can be used. So, often in this direction: If you activate a functionality,
you need a corresponding technical configuration to make it work.”I7
Hence, future studies should make sure to control for other types of
configuration, collect the intent of configuration, make the environ-
ment and adaptation of the corresponding configurations clear, and
include more stakeholders with their role in an option’s life cycle.
Overall, we often see a small fraction of the dimensions and values
covered by each study. This is not problematic per se if the paper
makes this context clear and when we can build a bigger picture by
combining multiple studies. Unfortunately, the coverage across pa-
pers is low so that the same context often evaluated multiple times.
This is a clear outcome when applying our model. Covering the
same dimensions multiple times can be a means to replicate former
findings, but we could not find only limited attempt to reevaluate
or compare against prior work. Instead, we see that many dimen-
sions and values, although practically relevant, are left untouched,
which hinders transfer to a practical context and the derivation of
generalizable insights.

Performance Optimization. Several papers focus on finding high-
performance software configurations [22, 26]. They all take the
same context: A user or the developer configures a system via con-
figuration files at load time or build time. The environment is never
made explicit. So it is entirely unclear at which stage performance
optimizations are made and, more importantly, the infrastructure
(type) is not taken into account although it has a profound influence
on performance. Moreover, reconfiguration or software evolution
does not play a role, so the life cycle of options addresses only
binding options to their values.

A practical context would require extending the types of config-
uration to infrastructure configuration and also considering addi-
tional configuration artifacts. As performance is mainly driven by
the underlying hardware, and not the user, but the DevOps and Ops
persons are responsible for maintaining and owning performance-
relevant configurations, research on performance optimization
should broaden the scope toward these dimensions.

4.2 Best Practices
Based on our interviews and the developed model on configuration,
we articulate challenges and point to best practices.

Configuration Errors. Configuration errors are an important issue
in practice: “They are harder to find than normal bugs. It also depends
on the format of the configuration file.”I11 So, there seems to be a
relation from artifacts to errors. We found three main practices for
avoiding configuration errors: explicit modeling of options, favor
value binding at build time, and simplify configuration.

It seems that an explicit modeling of options, including docu-
mentation about the intent of an option can help in discussing
whether an option is needed or not (anymore). This calls for a
model, which, in fact, one company has introduced in form of a
meta-configuration: “Validation is part of the meta-configuration.
[. . .] So, there is a kind of management model, that is, a configuration
option is not only the name of the option, but also the data type, a

validation, or where does this configuration value come from, so cross
relations to other configuration values.”I11

To better handle configuration errors, practitioners aim to move
run-time configuration to build-time configuration. This enables
multiple things: “Real program code can have [errors], but there are
more possibilities to verify things, also already at build time. Maybe
that is a possibility to address this problem, that you may try to
validate or check the configuration as part of building the software.
[. . .] Everything that can be done as early as possible in the process,
validation checking, helps to solve these problems.”I11 Validation at
build time has also the benefit that errors can be spotted during
deployment and development and not at load time.

Finally, simplifying the configuration can be done in two ways.
First, the configuration process can be made less error prone by
guiding users through the process: “I don’t think that my users [of
the configuration editor] know what makes sense to configure and
what not. So, it is my task to find out how to present the configuration
options to the users in a way that it is as easy as possible to configure
things.”I11 Another approach is the recent practice of Convention
over Configuration, where a stakeholder (e.g., a developer) who
is usually not responsible for binding options’ values provides a
feasible pre-configuration that is hidden from the user, avoiding
the need to dig deep into configuration files. The stakeholder (e.g.,
ops engineer) who then owns the configuration can diverge from
the standard values to adapt the system to their needs.

Distributed Configuration. Configuration is nowadays distributed
overmultiple artifacts, types, stakeholders, and environments: “[Con-
figuration] was somehow under control in a monolithic system, be-
cause one could see everything what is in there. But now, one has not
even the chance for this, so one looks more in a spot-light manner
on individual components. [. . .] So, when I don’t know a thing about
where the sources are, where the tests are, and there is no default
structure, how should I find out something? And this structure is mega
important for configuration.”I1 A recurring pattern mentioned in
our interviews are dedicated platform teams for specific types of
configuration: “A sister team of ours mainly does this [Kubernetes
configuration]. They provide the basis for us and provide the low level
things.”I9 This delegation of configuration on expert knowledge and
clear separation of responsibilities is a success factor when it comes
to different types of configuration. We found further best practices
similar to [34]: naming conventions of options, placing configu-
ration files next to the code in a repository to enable versioning
of configuration, reviewing configuration files and configuration-
value changes in code reviews and pull requests.

Performance Engineering. All interviewees agreed that perfor-
mance is important and that either they or another team handles
performance issues: “There is a team that does nothing else than
performance testing. They have different setups at hand [. . .] and
every new function becomes eventually part of a performance test.”I11
One issue is that performance is difficult to measure or monitor
and it is even unclear what to include into performance metrics:
“Performance is really difficult. What means performance? Response
time of requests? From which requests? Resource consumption counts
as well.”I8 Unfortunately, we have not seen many solutions to per-
formance optimization despite its relevance. There are dedicated

Dimensions of Software Configuration ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

performance engineers running stress tests and other related mea-
surements, but with the main goal of finding good default values
rather than optimized settings for individual customers. These ob-
servations back up the need for research on performance optimiza-
tion, for example, by using machine learning or related techniques
to discover underlying patterns. Current best practice is a proper
monitoring infrastructure and logging of configuration changes to
make spotting performance issues and their causes easier.

4.3 Threats to Validity
We transcribed the interviews, performed the card-sorting process
on the German text and translated the extracted citations to English.
Both steps could introduce uncertainties and even change semantics.
We controlled for this threat by having at least two authors look
at each interview and making notes. We compared notes with the
double-checked translation. Similarly, the entire author team was
present during the card sorting sessions to minimize subjectivity.

Threats to external validity are certainly related to the number
and selection of interviewees. To mitigate threats caused by our
sample, we selected interviewees of different roles from different
companies. We are aware that the dimensions of configuration and
their interactions are certainly not exhaustive, as this is hardly possi-
ble with a single study. Nevertheless, we have covered a substantial
area of configuration, and future work with different practitioners
can certainly enrich the current version of our model.

5 RELATEDWORK
In addition to the two papers of our meta studies, most research
focuses on individual aspects of configuration, such as configuration
for the DevOps role. For instance, configuration management for
code and infrastructure has been found bymultiple studies to be one
essential technological enabler of DevOps [36, 39]. Other aspects of
configuration seem to relate to the environment, as in CI/CD. Hilton
and others studied the configuration effort of CI [9]. In particular,
they found that some projects frequently change their configuration
files over the project history. Our interviewees brought up similar
aspects of configuration, but described them as more intertwined
with different stakeholders and implementation artifacts.

Variability or feature models are central for defining the config-
uration space [4, 18]. However, most of the techniques concentrate
on individual software systems and ignore other dimensions, such
as infrastructure variability. Some approaches developed in the
area of multi-software product lines [29] provide means to model
different layers of configuration and different dimensions, such
as Velvet [30], Clafer [16], and the common variability language
(CVL). Still they focus on narrow aspects of configuration and our
model has already identified ways for extending the scope such as
explicitly modeling an options intent and life cycle.

Berger and others analyze features with respect to their types,
numbers, and constraints in 128 variability models [6]. Lee and
others report on modeling an elevator control software containing
490 features with 22 different operating environments [20]. Finally,
a recent study by Nešić and others collected 34 principles for mod-
eling variability in practice [23]. Again, although they do not aim
for capturing dimensions of configuration, they agree on subsets,
such as the life cycle of configuration, the existence of different

stakeholders, and the different intents for configuration. Our work
subsumes many aspects brought up by the literature by using ex-
pert interviews, so we link research to practice. Moreover, we lay
out interactions among these aspects and highlight corresponding
challenges and best practices.

6 CONCLUSION AND LESSONS LEARNED
“[Configuration] becomes ever more important, because we always
thrive for writing less code and better reaching our goals via config-
uration.”I8 In this vein, we built a paper on configuration to provide
context for research and practitioners about what aspects resemble
the context of configuration. This way, research becomes better to
translate to practice, better to compare with, a better to identify
current gaps. We argue that our model derived from three different
sources of qualitative interviews provides a strong foundation for
further research on this matter. Again, the vast number of work
related to configuration needs to be consolidated and we provide a
means to it. In addition, there are further lessons:

Configuration is code, but often without a well-defined grammar
and type system. This has serious implications on configuration
validation, the learning rate of how to configure a system, and
identifying and fixing configuration errors. Basically, we are coding
blindly and hope for the best. Common feature models do not pro-
vide the required expressiveness. Also, they provide no support for
the life cycle of options or mechanisms for staging and distributing
configurations in different environments. Current solutions often
propose distinct tools, such as FeatureIDE [41] for modeling and
validation, but it seems that a lightweight solution is needed that
smoothly integrates in the CI/CD process. A promising study that
builds on similar insights of [34] has shown that codifying con-
figuration with type information can improve the configuration
process [35].

Configuration is a highly cross-cutting activity affecting nearly
all stakeholders of a software system and manifesting in diverse ar-
tifacts across different environments. The tremendous diversity of
configuration combined with the high degree of interaction makes
the whole configuration aspect an increasing challenge. Specialized
teams, strict conventions, a clear concept about an option’s life
cycle, and an explicit modeling of configuration throughout all en-
vironments seem to be key mechanisms to counter the complexity.

Configuration in research and practice diverge with respect to
considered and limited contexts of studies. Balancing internal and
external validity may play an important role in studies about config-
uration (including ours) [37]. Our interviews have shown that for
some research areas, the scope should be substantially widened to
create actionable results (e.g., performance optimization). However,
this might come at the cost of limited explainability and verifiability.
We believe that by making the context of research explicit (with
our model), it allows for a series of experiments in varying contexts
where internal validity does not need to be traded for ecological or
external validity.

ACKNOWLEDGMENTS
Norbert Siegmund’s work has been funded by the German Research
Foundation (SI 2171/3-1, SI 2171/2). Janet Siegmund’s work has been
funded by the German Research Foundation (SI 2045/2-2).

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Norbert Siegmund, Nicolai Ruckel, and Janet Siegmund

REFERENCES
[1] Gojko Adzic and Robert Chatley. 2017. Serverless Computing: Economic and

Architectural Impact. In Proc., European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 884–889.
https://doi.org/10.1145/3106237.3117767

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer. https:
//doi.org/10.1007/978-3-642-37521-7

[3] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture. IEEE
Software 33, 3 (2016), 42–52. https://doi.org/10.1109/MS.2016.64

[4] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Proc., Int’l Conference on Software Product Lines (SPLC) (Rennes, France) (SPLC).
Springer-Verlag, 7–20. https://doi.org/10.1007/11554844_3

[5] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature?: A Qualitative Study of Features in Industrial Software Product Lines.
In Proc., Int’l Conference on Software Product Lines (SPLC). ACM, 16–25. https:
//doi.org/10.1145/2791060.2791108

[6] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. Softw. Eng. 39, 12 (2013), 1611–1640. https:
//doi.org/10.1109/TSE.2013.34

[7] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley Longman Publishing Co., Inc.

[8] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. 2014. Virtualization vs
Containerization to Support PaaS. In Proc., Int’l Conference on Cloud Engineering
(ICCE). IEEE, 610–614. https://doi.org/10.1109/IC2E.2014.41

[9] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-source
Projects. In Proc., Int’l Conference on Automated Software Engineering (ASE). ACM,
426–437. https://doi.org/10.1145/2970276.2970358

[10] William Hudson. 2013. Card Sorting. In Guide to Advanced Empirical Software
Engineering. The Interaction Design Foundation.

[11] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Professional.

[12] Vitalii Ivanov and Kari Smolander. 2018. Implementation of a DevOps Pipeline
for Serverless Applications. In Product-Focused Software Process Improvement (
PROFES). Springer, 48–64.

[13] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2016. What is
DevOps? A Systematic Mapping Study on Definitions and Practices. In Proc. of the
Scientific Workshop XP2016. ACM, 1–11. https://doi.org/10.1145/2962695.2962707

[14] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling
of configurable systems: An exploratory analysis. In Proc., Int’l Conference on
Automated Software Engineering (ASE). ACM, 497–508. https://doi.org/10.1109/
ASE.2017.8115661

[15] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018.
Learning to Sample: Exploiting Similarities Across Environments to Learn Perfor-
mance Models for Configurable Systems. In Proc., European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 71–82. https://doi.org/10.1145/3236024.3236074

[16] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michał Antkiewicz,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2018. Clafer: Lightweight Modeling
of Structure and Behaviour. The Art, Science, and Engineering of Programming
Journal 3 (2018). https://doi.org/10.22152/programming-journal.org/2019/3/2

[17] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. 2019. Distance-based Sampling of Software Configuration Spaces.
In Proc., Int’l Conference on Software Engineering (ICSE). IEEE, 1084–1094. https:
//doi.org/10.1109/ICSE.2019.00112

[18] Kyo Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report.

[19] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. 2013. Introduction to Combinatorial
Testing (first ed.). Chapman & Hall/CRC.

[20] Kwanwoo Lee, Kyo C. Kang, Eunman Koh, Wonsuk Chae, Bokyoung Kim, and
Byoung Wook Choi. 2000. Domain-Oriented Engineering of Elevator Control
Software. Springer, 3–22. https://doi.org/10.1007/978-1-4615-4339-8_1

[21] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. 2016. On Essential Configuration Complexity: Measuring Interactions in
Highly-configurable Systems. In Proc., Int’l Conference on Automated Software
Engineering (ASE). ACM, 483–494. https://doi.org/10.1145/2970276.2970322

[22] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Faster discov-
ery of faster system configurations with spectral learning. Automated Software
Engineering 25, 2 (2017), 247–277. https://doi.org/10.1007/s10515-017-0225-2

[23] Damir Nešić, Jacob Krüger, Stefan Stănciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In Proc., European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM,

62–73. https://doi.org/10.1145/3338906.3338974
[24] Sam Newman. 2015. Building Microservices. O’Reilly Media.
[25] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.

ACM Comput. Surv. 42, 2 (2011), 1–29. https://doi.org/10.1145/1883612.1883618
[26] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding Near-

optimal Configurations in Product Lines by Random Sampling. In Proc., European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 61–71. https://doi.org/10.1145/3106237.3106273

[27] Daniela Rabiser, Herbert Prähofer, Paul Grünbacher, Michael Petruzelka, Klaus
Eder, Florian Angerer, Mario Kromoser, and Andreas Grimmer. 2018. Multi-
purpose, Multi-level Feature Modeling of Large-scale Industrial Software Systems.
SoSyM 17, 3 (2018), 913–938. https://doi.org/10.1007/s10270-016-0564-7

[28] Ariel Rabkin and Randy Katz. 2011. Static Extraction of Program Configuration
Options. In Proc., Int’l Conference on Software Engineering (ICSE). ACM, 131–140.
https://doi.org/10.1145/1985793.1985812

[29] Marko Rosenmüller and Norbert Siegmund. 2010. Automating the Configuration
of Multi Software Product Lines. In Proc., Int’l Workshop on Variability Modelling
of Software-intensive Systems (VaMoS). University of Duisburg-Essen, 123–130.

[30] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. 2011.
Multi-Dimensional Variability Modeling. In Proc., Int’l Workshop on Variability
Modelling of Software-intensive Systems (VaMoS). ACM, 11–20. https://doi.org/
10.1145/1944892.1944894

[31] Gordon Rugg and Peter McGeorge. 2005. The Sorting Techniques: A Tutorial
Paper on Card Sorts, Picture Sorts and Item Sorts. Expert Systems 14 (2005),
94–107. Issue 2. https://doi.org/10.1111/1468-0394.00045

[32] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czarnecki.
2015. Cost-Efficient Sampling for Performance Prediction of Configurable Sys-
tems. In Proc., Int’l Conference on Automated Software Engineering (ASE). IEEE,
342–352. https://doi.org/10.1109/ASE.2015.45

[33] Mohammed Sayagh, Noureddine Kerzazi, and Bram Adams. 2017. On Cross-stack
Configuration Errors. In Proc., Int’l Conference on Software Engineering (ICSE).
IEEE, 255–265. https://doi.org/10.1109/ICSE.2017.31

[34] Mohammed Sayagh, Noureddine Kerzazi, Bram Adams, and Fabio Petrillo. 2018.
Software Configuration Engineering in Practice: Interviews, Survey, and System-
atic Literature Review. IEEE Transactions on Software Engineering 42, 6 (2018),
646–673. https://doi.org/10.1109/TSE.2018.2867847

[35] Mohammed Sayagh, Noureddine Kerzazi, Fabio Petrillo, Khalil Bennani, and
Bram Adams. 2020. What Should Your Run-time Configuration Framework Do
To Help Developers? Empirical Software Engineering (EMSE) 25 (2020), 1259–1293.
https://doi.org/10.1007/s10664-019-09790-x

[36] Mali Senapathi, Jim Buchan, and Hady Osman. 2018. DevOps Capabilities,
Practices, and Challenges: Insights from a Case Study. In Proc., Int’l Confer-
ence on Evaluation and Assessment in Software Engineering (EASE). ACM, 57–67.
https://doi.org/10.1145/3210459.3210465

[37] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal and
External Validity in Empirical Software Engineering. In Proc., Int’l Conference on
Software Engineering (ICSE). IEEE, 9–19. https://doi.org/10.1109/ICSE.2015.24

[38] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don
Batory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting Performance via
Automated Feature-Interaction Detection. In Proc., Int’l Conference on Software
Engineering (ICSE). IEEE, 167–177. https://doi.org/10.1109/ICSE.2012.6227196

[39] Jens Smeds, Kristian Nybom, and Ivan Porres. 2015. DevOps: A Definition and
Perceived Adoption Impediments. In Agile Processes in SE and XP. Springer, 166–
177. https://doi.org/10.1007/978-3-319-18612-2_14

[40] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded Theory in
Software Engineering Research: A Critical Review and Guidelines. In Proc., Int’l
Conference on Software Engineering (ICSE). ACM, 120–131. https://doi.org/10.
1145/2884781.2884833

[41] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014),
70–85. https://doi.org/10.1016/j.scico.2012.06.002

[42] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
2019. Towards Efficient Analysis of Variation in Time and Space. In Proc., Int’l
Conference on Software Product Lines (SPLC). ACM, 57–64. https://doi.org/10.
1145/3307630.3342414

[43] Guadalupe Trujillo Tzanahua, Ulises Juárez Martínez, Alberto Aguilar-Lasserre,
and Karen Verdín. 2018. Multiple Software Product Lines: Applications and
Challenges. In Proc., Int’l Conference on Software Process Improvement (CIMPS).
Springer, 117–126. https://doi.org/10.1007/978-3-319-69341-5_11

[44] James Turnbull. 2014. The Docker Book: Containerization is the new virtualization.
[45] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and

Rukma Talwadker. 2015. Hey, You Have Given Me Too Many Knobs!: Un-
derstanding and Dealing with Over-designed Configuration in System Soft-
ware. In Proc., European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 307–319. https:
//doi.org/10.1145/2786805.2786852

https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1007/11554844_3
https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/IC2E.2014.41
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/ASE.2017.8115661
https://doi.org/10.1109/ASE.2017.8115661
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1007/978-1-4615-4339-8_1
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1007/s10515-017-0225-2
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1007/s10270-016-0564-7
https://doi.org/10.1145/1985793.1985812
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1111/1468-0394.00045
https://doi.org/10.1109/ASE.2015.45
https://doi.org/10.1109/ICSE.2017.31
https://doi.org/10.1109/TSE.2018.2867847
https://doi.org/10.1007/s10664-019-09790-x
https://doi.org/10.1145/3210459.3210465
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2012.6227196
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1145/3307630.3342414
https://doi.org/10.1145/3307630.3342414
https://doi.org/10.1007/978-3-319-69341-5_11
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1145/2786805.2786852

	Abstract
	1 Introduction
	2 Methodology
	2.1 Qualitative Study
	2.2 Meta Study

	3 Results: A Model on Configuration
	3.1 Stakeholder
	3.2 Type of Configuration
	3.3 Binding Time
	3.4 Configuration Artifact
	3.5 Stage
	3.6 Configuration Life Cycle
	3.7 Intent for Configuration
	3.8 Configuration Complexity
	3.9 Interactions

	4 Application of the Model
	4.1 Application to Research
	4.2 Best Practices
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Lessons Learned
	Acknowledgments
	References

